CRITERION 8	First Year Academics	Max Marks 50
		Claimed 41.58

8.1. First Year Student Faculty Ratio (FYSFR)

M.M.: 5

Data for first year courses to calculate the FYSFR:

Institute Marks: 4.93

In order to determine the First Year Student Faculty Ratio (FYSFR) we obtained the number of faculty members (F) teaching first year courses considering their fractional load. The number of faculty members (F) is rounded off to the nearest integer. The actual intake of students in all branches together is taken as the number of students (N). The ratio of the number of faculty members (F) and the number of students (N) gives us the FYSFR. Assessment (limited to 5) is determined from the formula (5×20)/FYSFR. These calculations are tabulated below:

Year	Number of Students (actual intake, N)	Number of Faculty Members (F)	FYSFR	Assessment = (5×20)/FYSFR (Limited to Max.5)
CAY (2020-2021)	899	52	17.28	5
CAYm1(2019-2020)	778	46	16.91	5
CAYm2(2018-2019)	672	36	18	5
Average	783	44	17.3	5

8.2. Qualification of Faculty Teaching First Year Common Courses (5)

M.M.: 5

Institute Marks: 4.45

Assessment of qualification = (5X+3Y)/RF, X=Number of Regular Faculty with Ph.D., Y=Number of Regular Faculty with Post-graduate qualification, RF=Number of Faculty required as per SFR of 20:1, Faculty definition as defined in 5.1. Most of the Faculty members (X) are doctorates, however, few of the Faculty members (Y) are postgraduates. The Number of Faculty Members (RF) is determined by dividing the Number of Students (X) by 20. The numbers are shown in the table given below:

Academic Year	X	Y	RF	Assessment of Faculty Qualification (5 <i>X</i> +3 <i>Y</i>)/ <i>RF</i>
CAY(2020-2021)	30	22	45	5.4
CAYm1(2019-2020)	24	22	38.9	4.78
CAYm2(2018-2019)	15	21	33.6	4.10
Average Ass	essment	I	1	4.76

8.3. First Year Academic Performance (10)

M.M.:10

Institute Marks: 5.2

Academic Performance Index (API)= (Mean of 1^{st} Year Grade Point Average of all successful Students on a 10 point scale) or (Mean of the percentage of marks in First Year of all successful students/10) ×(number of successful students/number of students appeared in the examination).

Successful students are those who are permitted to proceed to the second year.

The Mean of 1st Year Grade Point Average (GPA) of all the successful Students on a 10-point scale (G), is taken as an average of the mean of Student Performance Index (SPI) for Semester-I and Semester-II, of all the successful Students promoted to 2nd year. The backlog students have not been considered in these calculations.

Academic year	1st Year Mean GPA (G)	No. of Successful Students (S)	No. of Students Appeared (N)	$API= G\times (S/N)$	Average API
2019-2020	7.65	637	640	7.61	
2018-2019	7.17	375	481	5.59	5.7
2017-2018	7.11	235	439	3.81	

8.4. Attainment of Course Outcomes of first year courses

Institute Marks: 9

M.M.: 10

8.4.1. Describe the assessment processes used to gather the data upon which the evaluation of Course Outcomes of first year is done

Assessment Processes:

There are two assessment processes:

- (i) Direct Assessment Processes:
 - (a) Mid Term Exam
 - (b) End Semester Exam
 - (c) Practical Exam
 - (d) Continuous Assessment (Assignments)
- (ii) Indirect Assessment Processes:
 - (a) Course Exit Survey
 - (b) Program Level Surveys (not applicable for 1st year)

To assess the course outcomes, direct and indirect assessment processes are used. Direct assessment consists of one internal and one end-semester examination whereas indirect assessment is obtained using a course exit survey. The Internal Assessment (including assignments and one mid-term examination) contributes to 40% and the End Semester Examination contributes to 60% of the overall assessment of each Course Outcome.

Overall Attainment of Program Outcomes is determined as below:

80% of the Direct Attainment

20% of the Indirect Attainment

Examination questions are designed to test the Attainment Level of the defined Course Outcomes. In general, mid-term examination (of 30 marks) is used to assess the Attainment Level for CO1 and CO2, the assignment (of 10 marks) is used to assess attainment of CO3. The questions of the end-semester examination (of 60 marks) are equally distributed to attain all the five COs of the course. However, teachers are free to use their methods to determine the attainment of COs using a different distribution of marks.

When the students admitted to the first year of B. Tech Programme, they are grouped into Eight Sections based on eight engineering branches. The CO attainment (for all COs) for a particular

course is determined separately for each section and their average is taken as the attainment of the COs for that particular course. The total marks obtained by the students (of a particular section) in each CO are combined. The attainment level of a particular CO (in percentage) is determined by taking the ratio of the total marks obtained by the students and the total marks allocated to that CO. The percentage of marks is categorized into three groups and assigned different weightage.

Attainment Levels:

(For Theory Subjects)

For Academic Year 2018-2019 & 2019-20

50% of students scoring more than the benchmark (50%) ---Level-1 60% of students scoring more than the benchmark (50%) ---Level-2 70% of students scoring more than the benchmark (50%) ---Level-3

For Academic Year 2017-2018

50% of students scoring more than the benchmark (40%) ---Level-1 60% of students scoring more than the benchmark (40%) ---Level-2 75% of students scoring more than the benchmark (40%) ---Level-3

(For Laboratory Subjects)

For Academic Year 2017-2018, 2018-2019 & 2019-20

60% of students scoring more than the benchmark (50%) ---Level-1 70% of students scoring more than the benchmark (50%) ---Level-2 80% of students scoring more than the benchmark (50%) ---Level-3

Course Structure of B. Tech. 1st Year (Schema till Spring 2018)

1st Semester (Common to All Branches): Autumn

			7 III Branches): Tratanini							
S.	Course	Course	Course Name	Credit	T	Т	p	HRS	Maximu	m Marks
No.	Type	Code	Course Ivaine	Cicuit	נ	1	1	III	Mid-term	End-term
1.	Theory	HSS-101	Communication Skills & Oral Presentation	03	3	0	0	3	30	60
2.	Theory	PHY-101	Physics – I	03	2	1	0	3	30	60
3.	Theory	CHM-101	Chemistry-I	03	2	1	0	3	30	60
4.	Theory	MTH-101	Mathematics - I	03	3	1	0	4	30	60
5.	Theory/Lab	CIV-102	Engineering Drawing	03	2	0	0	4	30	60
6.	Theory	1 11-101	Computer Fundamentals and Problem-Solving Techniques	03	3	3	0	3	30	60
7.	Lab	WSP-1	Workshop Practice-I	02	0	0	4	3	40	60
8	Lab	PHY-102P	Physics Lab	01	0	0	2	3	40	60
9	Lab	CHM-101P	Chemistry Lab	01	0	0	2	3	40	60
10	Lab	IT-1023	Computer Fundamental Lab	01	0	0	2	3	40	60

^{2&}lt;sup>st</sup> Semester (Common to All Branches): Spring

S.	Course	Course	Course Name	Credit	L	Т	D	HRS	Maximu	m Marks
No.	Type	Code	Course Name	Credit	L	1	P	пкэ	Mid-term	End-term
1.	Theory	HSS-201	Introduction to Social Sciences	03	3	0	0	3	30	60
2.	Theory	PHY-201	Physics – II	03	2	1	0	3	30	60
3.	Theory	CHM-201	Chemistry-II	03	2	1	0	3	30	60
4.	Theory	MTH-201	Mathematics - II	03	3	1	4	3	30	60
5.	Theory	MEC-201	Machine Drawing	03	1	0	4	3	30	60
6.	Theory	CSE-201	Computer Programming	03	3	3	0	3	30	60
7.	Theory	CIV-	Strength of Materials	03	3	3	0	3	30	60
8	Lab	WSP-2	Workshop Practice-II	02	0	0	4	2	40	60
9	Lab	PHY-202P	Physics Lab	01	0	0	2	2	40	60
10	Lab	CHM-	Chemistry Lab	01	0	0	2	3	40	60
10		201P		01	U	U	_		70	00
11	Lab	CSE-202P	CSE Lab	01	0	0	2	2	40	60

Course Structure of B. Tech. 1st Year (New Scheme from autumn 2019)

1st Semester (Group A)

Electrical / Electronics & Comm. / Computer Science / Information Technology

S.	Course	Course Title	Department	Credit		Cont	tact Ho	ours
No.	Code	Course Title	Offering	Cicuit	L	T	P	Total
1	EEL100	Basic Electrical Engineering	Electrical	4	3	1	0	4
2	HUL100	Basic English and Communication Skills	Humanities	3	2	1	0	3
3	ITL100	Computer Programming	Information Technology	3	2	1	0	3
4	CYL100	Engineering Chemistry	Chemistry	4	3	1	0	4
5	CIP100	Engineering Drawing	Civil	4	1	0	6	7
6	MAL100	Mathematics I	Mathematics	4	3	1	0	4
7	ELP100	Basic Electrical Engineering Laboratory	Electrical	1	0	0	2	2
8	CYP100	Chemistry Laboratory	Chemistry	1	0	0	2	2
9	ITP100	Computer Programming Laboratory	Information Technology	1	0	0	2	2
		Total		25	14	5	12	31

1st Semester (Group B)

Civil/ Mechanical / Chemical / Mett & Mat Science

S. No.	Course	Course Title	Department	Credit		Cont	act 1	Hours
S. NO.	Code	Course Title	Offering	Credit	L	T	P	Total
1	MEL100	Elements of Mechanical	Mechanical	3	2	1	0	3
		Engg.						
2	PHL100	Engineering Physics	Physics	4	3	1	0	4
3	CIL100	Engineering Mechanics	Civil	4	3	1	0	4
4	HUL100	Basic English and Communication Skills	Humanities	3	2	1	0	3
5	CYL101	Environmental Studies	Chemistry	3	2	1	0	3
6	MAL100	Mathematics I	Mathematics	4	3	1	0	4
7	HUP100	Language Laboratory	Humanities	1	0	0	2	2
8	PHP100	Physics Laboratory	Physics	1	0	0	2	2
9	WSP100	Workshop Practice	Workshop	2	0	0	5	5
		Total		25	15	6	9	30

2nd Semester (Group A)

<u>Electrical / Electronics & Comm. / Computer Science / Information Technology</u>

S. No.	Course	Course Title	Department	Credit	(Conta	ct Ho	urs
S. NO.	Code	Course Title	Offering	Credit	L	T	P	Total
1	HUL101	Advanced English Comm.						
		Skills &	Humanities	3	2	1	0	3
		Organizational						
		Behavior						
2	PHL100	Engineering Physics	Physics	4	3	1	0	4
3	CIL100	Engineering Mechanics	Civil	4	3	1	0	4
4	MEL100	Elements of Mechanical Engg.	Mechanical	3	2	1	0	3
5	CYL101	Environmental Studies	Chemistry	3	2	1	0	3
6	MAL101	Mathematics II	Mathematics	4	3	1	0	4
7	HUP100	Language Laboratory	Humanities	1	0	0	2	2
8	PHP100	Physics Laboratory	Physics	1	0	0	2	2
9	WSP100	Workshop Practice	Workshop	2	0	0	5	5
		Total		25	15	6	8	30

2nd Semester (Group B)

Civil/ Mechanical / Chemical / Mett & Mat Science

S. No.	Course	Course Title	Department	Credit	(Conta	ct Ho	ours
S. NO.	Code	Course Title	Offering	Credit	L	T	P	Total
1	HUL101	Advanced English Comm.						
		Skills & Organizational	Humanities	3	2	1	0	3
		Behavior						
2	EEL100	Basic Electrical Engineering	Electrical	4	3	1	0	4
3	ITL100	Computer Programming	Information Technology	3	2	1	0	3
4	CYL100	Engineering Chemistry	Chemistry	4	3	1	0	4
5	CIP100	Engineering Drawing	Civil	4	1	0	6	7
6	MAL101	Mathematics II	Mathematics	4	3	1	0	4
7	ELP100	Basic Electrical Engineering Laboratory	Electrical	1	0	0	2	2
8	CYP100	Chemistry Laboratory	Chemistry	1	0	0	2	2
9	ITP100	Computer Programming Laboratory	Information Technology	1	0	0	2	2
	_	Total		25	14	5	12	31

Course Outcomes (COs) are defined for each course by the concerned teachers and approved by the DUGC of the department. The Course Outcomes are displayed on notice boards and also explained to the students by the concerned teachers at the beginning of the course. The COs of each (theory and lab) course are mapped with Program Outcomes (POs). The CO-PO mapping table for the sample course Paper Code: HSS-101 Autumn Semester (2017), 1st Semester (1st Year), B. Tech Civil Engineering; Subject: Communication Skills and Oral Presentation (HSS 101) is shown in Table

Course Articulation Matrix for the sample course HSS-101

Code	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSS-	To exhibit effective reading and									2	2	2	
<i>101</i> .CO1	writing skills.										3		
HSS-	To use grammatical elements									2	2	2	
101.CO2	correctly.												
HSS-	To produce project reports with									2	3	3	
101.CO3	efficient technical writing skills.										3	3	
HSS-	To give an effective oral									3	2	2	
101.CO4	presentation in English.									3			
	Average Value									2.25	2.5	2.25	

The syllabus based CO-PO mapping of all courses offered during first year are shown below

The Program Articulation Matrix for the first year courses

Course Name	Course Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO1	PO11	PO12
Communication Skills & Oral Presentation	HSS-101									2.25	2.5	2.25	
Physics – I	PHY-101	3	2.75	2.5	1.25	1.5							1
Chemistry-I	CHM-101	2.5	1.5			2.5	2	2.25			1.33	2	1.25
Mathematics - I	MTH-101101	2.4	1.8	2.6								1	
Engineering Drawing	CIV-102	3	3	3	3	2	1.5	1.75		3	3	3	2
Computer Fundamentals and Problem-Solving Techniques	IT-101	2.5	3	1		2							2
Workshop Practice-I	WSP-1	3	1	1		2	2	2	2	3	2		3
Physics Lab	PHY-102P	3	3	3	2	2	1			1			
Chemistry Lab-I	CHM-101P	2.5	1.5			2.5	2	2.25			1.33	2	1.25
Computer Fundamental Lab	IT-1023	2	2.5	2.75	2.5	2				1	2		
Introduction to Social Sciences	HSS-201			2			1.75	1.5	1.5	2	2	1.5	2
Physics – II	PHY-201	3	2.75	2.5	1.25	1.5							1
Chemistry-II	CHM-201	2.3	1.8	2.3	1.0	1.7	1.0	2.7	1.0	1.0	2.0		1.8
Mathematics - II	MTH-201	2.4	1.8	2.6								1	
Machine Drawing	MEC-201	2.5	1	2.5	1				1.25	1			1
Computer Programming	CSE-201	2.75	2.33	2.5	3	1.75							2.5
Workshop Practice-II	WSP-2	3	1	1		2	2	2	2	3	2		3
Physics Lab-II	PHY-202P	3	3	3	2	2	1			1			
Chemistry Lab-II	CHM-201P	2.5	2	1.75			1.75	2			1.5	1.33	1.25
CSE Lab	CSE-202P	2.5	2.5	2.75	2.33	2.5				1			3
Strength of Materials	CIV-201	3	3	2.2	2.2		2	1					
Average Attai	nment	2.7	2.2	2.3	2.0	2.0	1.6	1.9	1.6	1.7	1.9	1.7	1.9

The syllabus based CO-PO mapping of all courses offered as per New Scheme

	1 st Semester (Group A) Electrical / Electronics & Comm. / Computer Science / Information Technology													
S. No.	Course Code	Course Title	PO1				PO5		DΩ			PO10	PO11	PO12
1	EEL100	Basic Electrical Engineering	2.8	1.8	1.6	2.6	1.5						2.3	1.4
2	HUL100	Basic English and Communication Skills						2			2.3	3	2	2.5
3	ITL100	Computer Programming	1.8	3	3	2								2.6
4	CYL100	Engineering Chemistry	2.25	2	2	1		1.5	2	1	1	2	2	2.25
5	CIP100	Engineering Drawing	3	3	3	3	2	2	2		3	3	2	2
6	MAL100	Mathematics I	2.4	1.8	2.6								1	
7	ELP100	Basic Electrical Engineering Laboratory	2	1.25	1.6	1.7								1.5
8	CYP100	Chemistry Laboratory	2.5	2	2.25	1		1.5	2	1	1	2	2	2.5
9	ITP100	Computer Programming Laboratory	3	3	3		2				1			3
10	MEL100	Elements of Mechanical Engg.	3	2	2							2		3
11	PHL100	Engineering Physics	3	3	3	2.8	2.6							
12	CIL100	Engineering Mechanics	3	3	1.8	1.8		2	1					
13	HUL101	Advanced English Comm. Skills & Organizational Behavior						2.5			2.33	3	2	2
14	CYL101	Environmental Studies	2.75	2.5	3		1.75	2.75	3			2	1.5	2.25
15	MAL101	Mathematics II	2.4	1.8	2.6								1	1
16	HUP100	Language Laboratory									3	3	3	2
17	PHP100	Physics Laboratory	3	3	3	3	3	1			1			
18	WSP100	Workshop Practice	3	1	1		2	2	2	2	3	2		3
		Average	2.66	2.28	2.36	2.1	2.12	1.92	2	1.33	2.08	2.44	1.88	2.15

8.4.2. Record the attainment of Course Outcomes of all first year courses

The Attainment Level of Course Outcomes of first year courses is determined using the procedure explained in the previous section. The calculation table for direct and indirect attainment of COs for the sample course Paper Code: HSS-101 Autumn Semester (2017), 1st Semester (1st Year), B. Tech Civil Engineering; Subject: Communication Skills and Oral Presentation (HSS 101) is shown in the table given below:

Determination of average correlated attainment of COs for the Sample Course

S. No	Course Outcome	CO attainment	CO attainment	Overall
		(Direct	(Indirect	80% Direct + 20%
		Assessment)	Assessment)	Indirect
1	CO1	2	2.43	2.08
2	CO2	2	2.53	2.10
3	CO3	2	2.50	2.1
4	CO4	2	2.48	2.09

Direct and Indirect Attainment of COs for the considered courses in 2017-18

Course Nome	Course Code	Level of A	Attainment		
Course Name	Course Code	Direct	Indirect		
Communication Skills and Oral Presentation	HSS-101	1.85	3		
Physics-I	PHY-101	2.04	3		
Chemistry-I	CHM-101	2.55	3		
Mathematics-I	MTH-101	1.71	3		
Engineering Drawing	CIV-102	1.64	3		
Introduction to Social Sciences	HSS-201	2.4	3		
Physics-II	PHY-201	1.54	3		
Chemistry-II	CHM-201	2.68	3		
Mathematics-II	MTH-201	2.0	3		
Strength of Materials	CIV-201	1.91	3		
Computer Fundamentals and Problem-Solving Techniques	IT-101	2.55	3		
Workshop Practice-I	WSP-1	2.72	3		
Physics Lab	PHY-102P	3	3		
Chemistry Lab	CHM-101P	3	3		
Computer Fundamental Lab	IT-1023	2.38	3		
Machine Drawing	MEC-201	2.14	3		
Computer Programming	Cse201 Programming	2.03	3		
Workshop Practice-II	WSP-II	2.71	3		
Physics Lab-II	PHY-202P	2.79	3		
Chemistry Lab	CHM-201P	3	3		
CSE Lab	CSE-202P	2.49	3		

Direct and Indirect Attainment of COs for the considered courses in 2018-19

Course Norse	Causa Cada	Level of A	Attainment
Course Name	Course Code	Direct	Indirect
Communication Skills and Oral Presentation	HSS-101	2.53	3
Physics-I	PHY-101	1	3
Chemistry-I	CHM-101	2.49	3
Mathematics-I	MTH-101	2.1	3
Engineering Drawing	CIV-102	0.54	3
Introduction to Social Sciences	HSS-201	2.22	3
Physics-II	PHY-201	1.62	3
Chemistry-II	CHM-201	2.66	3
Mathematics-II	MTH-201	2.1	3
Strength of Materials	CIV-201	1.94	3
Computer Fundamentals and Problem-Solving Techniques	IT-101	2.55	3
Workshop Practice-I	WSP-1	2.75	3
Physics Lab	PHY-102P	2.77	3
Chemistry Lab	CHM-101P	3	3
Computer Fundamental Lab	IT-1023	2.36	3
Machine Drawing	MEC-201	1.36	3
Computer Programming	Computer Programming	2.22	3
Workshop Practice-II	WSP-II	2.79	3
Physics Lab-II	PHY-202P	2.7	3
Chemistry Lab	CHM-201P	2.95	3
CSE Lab	CSE-202P	2.65	3

Direct and Indirect Attainment of COs for the considered courses in 2019-2020

S. No.	Course Code	Course Title	Level of Attainment	
S. NO.		Course Title	Direct	Indirect
1	EEL100	Basic Electrical Engineering	2.3	3
2	HUL100	Basic English and Communication Skills	2.76	3
3	ITL100	Computer Programming	2.2	3
4	CYL100	Engineering Chemistry	2.87	3
5	CIP100	Engineering Drawing	2.42	3
6	MAL100	Mathematics I	1.94	3
7	ELP100	Basic Electrical Engineering Laboratory	2.6	3

8	CYP100	Chemistry Laboratory	3	3
9	ITP100	Computer Programming		3
		Laboratory	2.9	
10	MEL100	Elements of Mechanical Engg.	2.5	3
11	PHL100	Engineering Physics	3	3
12	CIL100	Engineering Mechanics	2.41	3
13	HUL101	Advanced English Comm.	2.68	3
		Skills & Organizational		
		Behavior		
14	CYL101	Environmental Studies	3	3
15	MAL101	Mathematics II	2.67	3
16	HUP100	Language Laboratory	2.08	3
17	PHP100	Physics Laboratory	3	3
18	WSP100	Workshop Practice	3	3

8.5. Attainment of Program Outcomes from first year courses

Institute Mark: 18

M.M.: 20

8.5.1A Process of computing POs attainment level from the COs of related first year courses

Course Articulation Matrix with Correlation for the sample course HSS-101

Code	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSS-101.CO1	To exhibit effective reading and writing skills.									2	3	2	
HSS-101.CO2	Icorrectly									2	2	2	
	To produce project reports with efficient technical writing skills.									2	3	3	
HSS-101.CO4	To give effective oral presentation in English.									3	2	2	
	Average Value									2.25	2.5	2.25	
	Correlation									3	3	3	

8.5.1. Indicate results of the evaluation of each relevant PO if applicable

M.M.: 10 Institute Marks: 10

8.5.1A Process of Computing POs attainment level from the COs of related 1st year courses

All the courses offered during 1st year have a strong correlation with most of the POs. The process of collection of data and their analysis has been explained in earlier sections. The syllabus-based Program Articulation Matrix for the first year courses is shown in Table. The Direct and In-direct Attainment Levels of Program Outcomes are calculated by making use of the formula (CO Attainment Level×CO Correlation Level)/3 and tabulated in Tables. The overall Attainment Levels of Program Outcomes are calculated by giving 80% weightage to Direct Attainment Levels of POs and 20% weightage to In-direct Attainment Level of POs. In other words, we used the formula (0.8×Direct Attainment Level of POs+0.2×In-Direct Attainment Level of POs). The overall Attainment Levels of Program Outcomes in each evaluation year are shown in the tables below:

Overall Attainment Levels of Program Outcomes for 1st year courses (2017-18)

Course Name	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
Communication Skills & Oral Presentation	HSS- 101									1.53	1.69	1.51	
Physics – I	PHY-	1.87	1.73	1.53	0.80	0.91							0.616
Chemistry-I	CHM- 101	2.08	1.75			1.5	1.2	1.7			1.68	1.7	1.7
Mathematics - I	MTH- 101101	1.57	1.22	1.59								0.64	
Engineering Drawing	CIV-	2.12	2.12	2.12	2.02	1.38	1.38	1.39	1.32	2.07	2.15	1.74	1.46
Computer Fundamentals and Problem-Solving Techniques	IT-101	2.23	1.09	0.37		0.85							1.73
Workshop Practice-I	WSP-1	2.70	0.90	0.90		1.80	1.80	1.80	1.80	2.704	1.80		2.704
Physics Lab	PHY-	2.4	2.4	2.2	1.6	1.6	0.8			0.8			
Chemistry Lab-I	CHM-	2	1.6	1.4			1.4	1.6			1.2	1.06	1
Computer Fundamental Lab	IT-1023	1.62	0.94	1.14		1.79							1.59
Introduction to Social Sciences	HSS- 201			0.97 75			1.12 75			1.186 25	0.97		0.977 5
Physics – II	PHY-	2.32	2.18	1.96	0.99	1.18							0.772
Chemistry-II	СНМ-	2.03	1.56	2.04	0.83	1.34	0.82	2.11	0.81	0.808	1.68		1.59
Mathematics - II	MTH- 201	1.57	1.20	1.69								0.64	
Machine Design	MEC-	1.650	0.373	1.788	0.54	0.88	0.4	0.6	0.92	0.768	0.4	0.6	0.369
Computer Programming	CSE-	1.79	1.8	1.95	1.32	1.61	0.57	0.57	0.6	0.71	0.58	0.63	1.85

Average Attainment		2.06	1.58	1.55	1.26	1.45	1.11	1.29	1.09	1.34	1.28	0.94	1.48
Strength of Materials	CIV-	2.16	2.16	1.28	1.36		1.44	0.84					
CSE Lab	CSE- 202P	1.84	2.21	2.15	1.33	2.03	0.58	0.58	0.57	0.95	0.62	0.64	2.12
Chemistry Lab-II	CHM-	2	1.6	1.4			1.4	1.6			1.2	1.06	1
Physics Lab-II	PHY-	2.5	2.3	2	1.8	1.7	0.9			0.8			
Workshop Practice-II	WSP-2	2.64	0.88	0.88		1.76	1.76	1.76	1.76	2.647	1.76		2.647

Overall Attainment Levels of Program Outcomes for 1st year courses (2018-19)

Course Name	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
Communication Skills & Oral	HSS-											1.9	
Presentation	101									1.88	2.15	3	
Physics – I	PHY-	1.93	1.79	1.587	0.80	0.94							0.63
Chemistry-I	CHM- 101	2.25	1.00			1.74	1 40	1.50			1 40	1.7	1.00
		2.26	1.82			1./4	1.43	1.58			1.49		1.88
Mathematics - I	MTH- 101101	1.64	1.25	1.64								0.6 7	
Engineering Drawing	CIV-	0.91	0.91	0.91	0.91	0.61	0.61	0.61		0.91	0.85	0.6	0.61
Computer Fundamentals and Problem-Solving Techniques	IT-101	2.05	1.01	0.45		0.79							1.59
Workshop Practice-I	WSP-1	2.73	0.909	0.909		1.82	1.82	1.82	1.82	2.73	1.82		2.73
Physics Lab	PHY-	2.4	2.4	2.2	1.6	1.6	0.8			0.8			
Chemistry Lab-I	СНМ-	2	1.6	1.4			1.4	1.6			1.2	1.0	1
Computer Fundamental Lab	IT-1023	1.63	0.92	1.14		1.78							1.56
Introduction to Social Sciences	HSS- 201			1.2			1.4	1.25	1.25	1.4	0.95	0.8	1.23
Physics – II	PHY-	1.77	1.716	1.506	0.80	0.91							0.59
Chemistry-II	СНМ-	1.8	1.4	1.6	1.2	0.8	0.8	1.86	0.8	0.8	1.6		1.4
Mathematics - II	MTH- 201	1.69	1.26	1.82								0.6	
Machine Design	MEC-	1.3	0.3	1.3	0.4	0.9	0.4	0.6	0.7	0.9	0.4	0.6	0.3
Computer Programming	CSE-	1.74	1.89	1.97	1.29	1.67	0.57	0.56	0.57	0.71	0.57	0.6	1.72
Workshop Practice-II	WSP-2	2.74	0.915	0.915		1.83	1.83	1.83	1.83	2.74	1.83		2.74
Physics Lab-II	PHY-	2.3	2.5	2.3	1.65	1.6	0.7			0.7			
Chemistry Lab-II	СНМ-	2	1.6	1.4			1.4	1.6			1.2	1.0	1
CSE Lab	CSE-	1.99	2.27	2.27	1.43	2.09	0.61	0.59	0.57	0.94	0.63	0.6	2.15
Strength of Materials	CIV-	2.19	2.19	1.3	1.37		1.45	0.85					
Average Attainment		1.95	1.51	1.46	1.15	1.36	1.09	1.23	1.08	1.26	1.14	0.8	1.41

Overall Attainment Levels of Program Outcomes for 1styear courses (2019-20)

			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
S.	Course Code	Course Title												
No.	Code													
1.	EEL100	Basic Electrical Engineering	2.11	1.35	1.20	1.30	0.28	0.65					1.14	0.99
2.	HUL100	Basic English and												
		Communication Skills						0.9			1.54	2.66	1.33	1.11
3.	ITL100	Computer Programming											1.5	1.5
			0.75	2.2	2.3		2.3							
4.	CYL100	Engineering Chemistry	1.76			0.81		1.13	1.79	0.81	0.81	1.72	1.56	2.02
5.	CIP100	Engineering Drawing	2.5	2.5	2.5	2.5	2.19	1.66	1.66	2.8	2.5	2.25	1.66	1.66
6.	MAL100	Mathematics I	1.31	1	1.26								0.56	
7.	ELP100	Basic Electrical Engineering												
		Laboratory	2.3	2.16		1.625		2.41	1.91				2.16	
8.	CYP100	Chemistry Laboratory	2.44	1.95	2.56	0.89		1.46	1.91	0.96	0.95	1.94	1.96	2.45
9.	ITP100	Computer Programming												
		Laboratory	2.2	2.1	2.1		2.2					1.6	1.6	1.5
10.	MEL100	Elements of Mechanical Engg.	2.45	1.63	1.75							1.63		2.45
11.	PHL100	Engineering Physics	2.9	2.5	2.3	1.2	1.3							
12.	CIL100	Engineering Mechanics	2.26	2.22	1.36	1.64		1.29	0.64			1.91		2.77
13.	CYL101	Environmental Studies	2.68	2.43	2.92		1.71	2.68	2.92			1.95	1.47	2.19
14.	HUP100	Language Laboratory									2.59	2.13	2.02	1.35
15.	PHP100	Physics Laboratory	3	2.975	2.75	2.125	2.025	1			1			
16.	WSP100	Work shop Practice	2.90	0.97	0.97		1.93	1.93	1.93	1.93	2.90	1.93		2.90
17.	HUL101	Advanced English Comm.												
		Skills &												
		Organizational												
		Behavior						2.39			1.9	2.63		1.91
18.	MAL101	Mathematics II	2.34		2.28								0.77	
	Average A	Attainment	2.26	1.99	2.01	1.51	1.74	1.59	1.82	1.63	1.77	2.03	1.49	1.95

8.5.2. Actions taken based on the results of evaluation of relevant POs M.M.: 10

Institute Marks:10

Pos Attainment Levels and Actions for improvement

Attainment is set to be achieved if it is 90% of the target level.

NIT Srinagar is committed to be a pioneer technical educational institute and the first step towards excellence is to beat your own records. At NIT Srinagar, irrespective of whether we achieve the target attainment level or not, we provide valuable feedback to the departments and the faculty

members to outdo their previous best, while action is taken to outrank the previous attainment levels so that the Institute can soar to new heights.

			2017-18			
POs	Target Level (60%)		Attainme	nt Level		Observations
PO1:	Apply the knowledge of engineering specialization		olution of	complex engi	neering p	roblems.
PO1	1.62			.06		target is achieved
Action1:	Faculty members are enco students using modern IC' fundamentals	_	_		_	=
PO2:	Identify, formulate, review problems reaching substantural sciences, and engine	antiated	conclusio		t principl	es of mathematics,
PO2	1.32			1.58	Set	target is achieved
	To write reviews of sample To give more tutorial prob			=	_	
PO3:	Design solutions for comprocesses that meet the sp and safety, and the cultural	ecified i	needs with	appropriate c	onsiderati	ion for public health
PO3	1.38			1.55	Set	target is achieved
	The students are encourag To organize visits to indus	_	_			
PO4:	Use research-based know analysis, and interpretation conclusions.	_			_	
PO4	1.2			1.26	Set	target is achieved
	Assign extra problems to facilitate a deeper understa	anding o	of the subje	ect.	olve them	in tutorial class to
Action2:	Encourageto participate in	ı semina	rs and pres	sentations.		
PO5:	Create, select, and apply a IT tools including predict understanding of the limit	tion and	-			

PO5	1.2	1.45	Set target is achieved		
Action1:	Conduct virtual classes and use ICT tools in	classroom teach	ings		
Action2: Students are encouraged to use simulation software to understand the modeling of					
	problems				
PO6:	Apply reasoning informed by the contextual legal and cultural issues and the consequent	· ·			
	engineering practice.				
PO6	0.96	1.11	Set target is achieved		
Action1:	Students are encouraged to participate in cult	tural and societal	l activities		
Action2:	To motivate the students to join different act	ivities on societa	l and health issues		
PO7:	Understand the impact of the profession environmental contexts, and demonstrate the development.				
PO7	1.14	1.29	Set target is achieved		
Action1:	Students are exposed to the concept of susta	inable developm	ent		
PO8:	Apply ethical principles and commit to profe norms of the engineering practice. 0.96	essional ethics at 1.09	nd responsibilities and Set target is achieved		
Action 1:	Students are motivated to understand and fo	now the profess	ional etnics		
PO9:	Function effectively as an individual, and as multidisciplinary settings.	a member or lea	ader in diverse teams and		
PO9	1.02	1.34	Set target is achieved		
Action1:	Students are encouraged to participate in gre	oup activities as	members or leaders.		
PO10:	Communicate effectively on complex engent community and with society at large, such effective reports and design documentation, receive clear instructions.	n as being able	to comprehend and write		
PO10	1.14	1.28	Set target is achieved		
Action1:	Seminars are organized and presentations are	made using aud	lio-visual tools.		
Action2:	Action2: Students were asked to write a report on certain topics in science and humanities.				
Action3:	Enhanced the visualization capabilities through	igh pictures, pro	totypes, and tools.		
PO11:	Demonstrate knowledge and understanding and apply these to one's work, as a member a in multidisciplinary environments.				

PO11	1.02	0.94	Set target is not achieved	
Action1:	Action1: Team works are organized, students participated as a member or a team leader.			
Action2:	Action2: Assigned projects and presentations in the field of science and humanities.			
PO12:	PO12: Recognize the need for and have the preparation and ability to engage in independent			
	and life-long learning in the broadest context of technological change.			
PO12	1.14	1.48	Set target is achieved	
Action1:	The students are motivated to educate to	themselves abou	at changing technological	
	environment.			

		2018-19			
POs	Target Level (65%)	Attainme	ent Level	Observations	
PO1:	Apply the knowledge of engineering specialization		_	ing fundamentals, and an ering problems.	
PO1	1.76		1.95	Set target is achieved	
Action1:	To organize practical class	ses to improve un	derstanding of ba	asic sciences.	
Action2:	To display animated video	os on engineering	fundamentals.		
PO2:				yze complex engineering	
	problems reaching substanatural sciences, and engin		ons using first p	principles of mathematics,	
PO2	1.43		1.51	Set target is achieved	
Action1:	To encourage the students	for reviewing the	existing literatur	re and writing the review of	
	various research papers or	the fundamental	s of engineering	sciences.	
Action2:	To inculcate more practical	al knowledge of th	nese subjects amo	ong the students by	
	involving them equally in	numerical session	18.		
PO3:	Design solutions for comp	olex engineering	problems and des	sign system components or	
	processes that meet the sp	pecified needs wa	th appropriate co	onsideration for the public	
	health and safety, and the cultural, societal, and environmental considerations.				
PO3	1.5		1.46	Set target is not achieved	
Action1:	The students are trained for	or solving various	complex enginee	ering problems and are	
	provided an importance of the same in today's competitive world.				
Action2:	Action2: To organize various engineering fests and cultural events to make the students aware				
	about the cultural and social importance of those events.				
PO4:		=		ing design of experiments,	
	analysis and interpretation conclusions.	n of data, and sy	nthesis of the in	formation to provide valid	

PO4	1.30	1.15	Set target is not achieved		
Action1:	Create an enthusiasm among the students t	for research and	encourage them to develop		
	efficient solutions from the various experiments conducted in laboratories.				
Action2:	on2: Facilitate the students to write worthy research reports by encouraging them to have				
	creative interpretation of the analytical resul-	ts.			
PO5:	Create, select, and apply appropriate techniq	ues, resources, a	nd modern engineering and		
	IT tools including prediction and modeling to complex engineering activities with an				
	understanding of the limitations.				
PO5	1.30	1.36	Set target is achieved		
Action1:	Create a virtual environment for inculo	cating various of	engineering concepts and		
	techniques among the students.				
Action2:	Students are encouraged to create various I	prototypes for a	better understanding of the		
	problems.				
PO6:	Apply reasoning informed by the contextual	=			
	legal and cultural issues and the consequent	responsibilities	relevant to the professional		
DO.	engineering practice.	1.04	G		
PO6	1.04	1.04	Set target is achieved		
Action 1:	Students are made to understand the releva	_	ance of social, cultural and		
A ation?	hygiene perspective in their professional life		Ith arriananasa mua anammas		
Actionz.	To arrange and participate in various societal	, cultural and nea	uur awareness programmes.		
PO7:	Understand the impact of the profession	nal engineering	solutions in societal and		
107.	environmental contexts, and demonstrate the				
	development.	ne knowledge of	i, and need for sustamatic		
PO7	1.24	1.231	Set target is not achieved		
	Students are encouraged to make the u		· ·		
	environmental, cultural, and social issues				
	development.				
PO8:	Apply ethical principles and commit to prof	essional ethics a	nd responsibilities and		
	norms of the engineering practice.		1		
PO8	1.04	1.08	Set target is not achieved		
Action1:	Action1: Students are taught the importance and relevance of ethics in their profession. They				
	are taught and motivated to follow the ethics in their professional life.				
PO9:	Function effectively as an individual, and as				
	in multidisciplinary settings.				
PO9	1.11	1.26	Set target is achieved		
Action1:	on1: Students are motivated to arrange various management events concerning leadership				
	skills and problem-solving techniques.				
	1 0 1				

PO10:	PO10: Communicate effectively on complex engineering activities with the engineering			
	community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation,	make effective p	presentations, and give and	
	receive clear instructions.			
PO10	1.24	1.14	Set target is not achieved	
Action1:	To conduct various lively engineering fests	and encourage the	he students to present their	
	ideas concerning various engineering issues.			
Action2:	To motivate the students to write exceller	nt research repor	rts by inculcating efficient	
	writing skills in them.			
PO11:	Demonstrate knowledge and understanding	ng of the engi	neering and management	
	principles and apply these to one's own work, as a member and leader in a team, to			
manage projects and in multi-disciplinary environments.				
PO11	1.11	0.86	Set target is not achieved	
Action1: To develop managerial and problem solving skills and team spirit among the students				
by teaching relevant management subjects along with the engineering curriculum.				
PO12: Recognize the need for, and have the preparation and ability to engage in independent				
and life-long learning in the broadest context of technological change.				
PO12	1.24	1.41	Set target is achieved	
Action1: To create awareness among the students about technology, its importance and its				
	dynamic nature.			

2019-20				
POs	Target Level (70%)	Attainme	nt Level	Observations
D∩1+	Apply the knowledge of	mothamatics so	ionoo onginoori	ng fundamentals and an
PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO1	1.86	2.25		Set target is achieved
Action1: To organize lectures (both online and offline) by renowned scientists explaining basic sciences to students.				
Action2: To explain and discuss real life examples where engineering fundamentals have been used for solving complex problems.				
PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO2	1.6		2.01	Set target is achieved
Action1: To write reviews of famous books on basic and engineering sciences.				
Action2: To give more home assignments for the purpose of enhancing an understanding of the subjects.				

DO 2			•		
PO3:	Design solutions for complex engineering problems and design system components or				
	processes that meet the specified needs with appropriate consideration for public health				
	and safety, and the cultural, societal, and environmental considerations.				
PO3	1.65	2.01	Set target is achieved		
Action1:	The students are prompted to organize semi	nars and worksho	ops to better understand		
	engineering problems and provide appropria				
Action2:	To provide alternate solutions to various en		ns.		
		9			
PO4:	Use research-based knowledge and research	n methods includ	ing design of experiments		
1011	analysis, and interpretation of data, and sy				
	conclusions.	nuncsis of the mi	formation to provide valid		
PO4	1.47	1.51	Set target is achieved		
Action1:	Performed extra activities with students fo subject.	r a better and de	eeper understanding of the		
Action2:	Students gave power-point presentations on	selected research	papers for better synthesis		
	and critical analysis of the information provi	ded.			
	· · · · ·				
PO5:	Create, select, and apply appropriate techniq	ues, resources, ai	nd modern engineering and		
	IT tools including prediction and modeling				
	understanding of the limitations.	5k	B 8		
PO5	1.48	1.72	Set target is achieved		
	Students are prompted to attend virtual sec				
Actioni.	institutions on complex problems faced by the	_			
A ation?			= =		
Action2.	Students are encouraged to use design thinking	ng approach for p	moviding afternate solutions		
	to the selected engineering problems,				
DOC	A 1	1 11 4	1 1 1.1		
PO6:	Apply reasoning informed by the contextual	=			
	legal and cultural issues and the consequent	responsibilities i	relevant to the professional		
	engineering practice.	1	T		
PO6	1.34	1.59	Set target is achieved		
Action1:	Students are encouraged to critically analyse	classroom lectur	es and reading material and		
	not just be passive recipients of information.				
PO7:	Understand the impact of the profession	al engineering	solutions in societal and		
	environmental contexts, and demonstrate the	he knowledge of	f, and need for sustainable		
	development.	<u> </u>			
PO7	1.4	1.83	Set target is achieved		
Action1: To provide an understanding of how sustainable development is the need of the hour. Action2: To inform students about practical approaches for achieving sustainable development					
4 1 CHOH2.	while solving critical engineering problems		5 sustamable development		
	winte solving critical engineering problems	•			

PO8:	Apply ethical principles and commit to profe	essional ethics ar	nd responsibilities and		
	norms of the engineering practice.				
PO8	0.93	1.63	Set target is achieved		
Action1:	1: To make students aware of how they can solve major problems using various				
	engineering approaches but at the same time responsible.	e being ethically,	, morally, and socially		
PO9:	Function effectively as an individual, and as a member or leader in diverse teams, and				
	in multidisciplinary settings.		,		
PO9	1.46	1.77	Set target is achieved		
Action1:	: Students are made aware of how crucial it is to work in a team and how to ensure that while doing so, both individual and team goals are met.				
PO10:	Communicate effectively on complex engommunity and with society at large, such	_			
	effective reports and design documentation,	_	_		
	receive clear instructions.	munic officer ()	oresentations, and gree and		
PO10	1.71	2.03	Set target is achieved		
1101101111	ction1: Students were asked to visit some local area, identify engineering problems they face, propose solutions, and document the same as a research report.				
Action2:	Students were asked to give group power-p	=			
10010112.	the project undertaken.	ome presentation	Tot totaler assessment of		
	the project undertaken.				
PO11:	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO11	1.32	1.49	Set target is achieved		
	Students are given semester-long group pro				
	individual and team performance metrics.	jeens alle ale als			
Action2:	2: Students are to discuss real-life case studies of how management has helped successful engineers in solving critical and complex engineering problems.				
PO12:	Recognize the need for, and have the prepar				
	and life-long learning in the broadest context of technological change.				
PO12	1.51	1.95	Set target is achieved		
Action1:	: The students are prompted to learn various advances in technology and how they are required to stay employable in the present-day dynamic and competitive global environment.				
Action2:	The students are to take some recent tech presentation how they have revolutionized the	•	cements and explain in a		