ASSIGNMENT-5

CHAPTER -5-Cross Drainage Works

Semester:6th,
Department:
B.Tech.
Civil Engineering

Question1. Design an aqueduct for the following data. Design the transitions by Mitra's method.

Canal:
Full supply discharge $=35$ cumecs
Full supply level $=200.0 \mathrm{~m}$
Canal bed level $=198.50 \mathrm{~m}$
Canal bed width $=22 \mathrm{~m}$
Depth of water $=1.5 \mathrm{~m}$
Side slopes $=1.5 \mathrm{H}: 1 \mathrm{~V}$
Constant depth in transition $=1.50 \mathrm{~m}$, Flumed width $=12 \mathrm{~m}$
Assume the following parameters:
Manning's rugosity coefficient $=0.015$, Splay in contraction transition $=2: 1$
Splay in expanding transition $=3: 1$, Lacey's silt factor $=1.0$
Free board in canal $=0.50$
The superstructure consists of an RCC trough.
Question2. Design a syphon aqueduct if the following data at the crossing of a canal and drainage are given:

Discharge of canal $=40$ cumecs
Bed width of canal $=30 \mathrm{~m}$
Full supply depth of canal $=1.6 \mathrm{~m}$

Bed level of canal $=206.4 \mathrm{~m}$
Side slopes of canal $=1.5 \mathrm{H}: 1 \mathrm{~V}$
High flood discharge of drainage $=450$ cumecs
High flood level of drainage $=207.0 \mathrm{~m}$
Bed level of drainage $=204.5 \mathrm{~m}$
General ground level $=206.5 \mathrm{~m}$.
Question3. Design a suitable cross-drainage work, given the following data at the crossing of a canal and drainage.

Irrigation Canal:
Full supply discharge $=300$ cumecs
Full supply level $=196.5 \mathrm{~m}$
Canal bed level $=194.9 \mathrm{~m}$
Canal bed width $=28 \mathrm{~m}$
$\mathrm{FSD}=1.6 \mathrm{~m}$
Side slopes $=1.5 \mathrm{H}: 1 \mathrm{~V}$
Question4. Design a suitable cross-drainage work, given the following data:

Irrigation Channel:
Full supply discharge $=354$ cumecs
Bed width $=24 \mathrm{~m}$
Full supply level $=207.60 \mathrm{~m}$

Natural Drainage:
High flood discharge $=145$ cumecs
High flood level $=200.0 \mathrm{~m}$
Drainage bed level $=198.1 \mathrm{~m}$

Canal bed level $=201.4 \mathrm{~m}$
Side slopes $=0.5 \mathrm{H}: 1 \mathrm{~V}$
Note: Prepare the above assignment within one week i.e. upto 12 th. July-2020. Keep it ready with you, You may have to submit it when asked within a short notice of time.

