Course Title: STRUCTURAL ENGINEERING LAB-I (Code: CIV- 301 P)	Syllabus for B.Tech. 3rd Semester (Civil Engineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

- CO1 To understand the behavior of structural members/elements under loading.
- CO2 To understand the properties of structural members so that one can judge at a glance safety and usage of a given structure.
- CO3 To determine crippling load of columns with different end conditions.
- CO4 To measure the ultimate shear strength.

S No	Name of experiment	Objective
1	Tensile Test of Steel	To determine yield strength, ultimate tensile strength,
		percentage elongation and modulus of elasticity (Plot,
		stress strain curve).
2	Tensile and Compressive strength	i. Parallel to grains
	of Timber	ii. Perpendicular to grains.
3	Shear test of steel/timber	To measure ultimate shear strength. Shear modulus.
		Plot shear stress strain Curve.
4	Torsion test of steel	To measure angle of twist. Ultimate Torsional
		strength stress strain Curve.
5	Buckling load of columns various	To determine crippling load of columns with different
	end conditions.	end conditions and compare
		theoretical values.
6	Verification of Maxwell's	To verify the Principle of Maxwell's theorem
	Theorem.	
7	Testing of Bricks and Stones as per	
	IS Specifications.	
8	Verification of horizontal thrust in	To evaluate experimentally horizontal thrust in a
	a three hinged arch	three hinged arch and draw influence line diagram
		for the horizontal thrust

Course Title: FLUID MECHANICS LAB-I (Code: CIV- 302 P)	Syllabus for B.Tech. 3rd Semester (Civil Engineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

- CO1 To develop understanding about hydrostatic law, principle of buoyancy and stability of a floating body and application of mass, momentum and energy equation in fluid flow.
- CO2 To imbibe basic laws and equations used for analysis of static and dynamic fluids.
- CO3 To inculcate the importance of fluid flow measurement and its applications in Industries.
- CO4 To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.
- 1. To determine experimentally the metacentric height of a ship model.
- 2. To verify the Bernoulli's equation experimentally.
- 3. To determine the coefficient of discharge, coefficient of velocity and coefficient of contraction of an orifice or a mouthpiece of a given shape.
- 4. To calibrate an orifice meter and to study the variation of coefficient of discharge with Reynold's number.
- 5. To calibrate a venturimeter and to study the variation of coefficient of discharge with Reynold's Number.
- 6. To calibrate sharp crested rectangular and triangular weir.
- 7. To verify momentum equation experimentally.

Course Title: SURVEYING LAB-I (Code: CIV- 303 P)	Syllabus for B.Tech. 3rd Semester (Civil Engineering)	Total Course Credit: 2		it: 2
Internal Examination	External Examination	L	Т	P
50 Marks	50 Marks	0	0	4

- **CO1** To handle and use basic surveying equipment viz., chain/ Tape, compass. Prepare layout plans.
- CO2 To measure angles and bearings..
- CO3 To handle and use plain table, and level.
- CO4 To handle and use level. Preparation of L –sections and X-sections showing relative levels of various points

Unit No.	Course Contents	Lecture Hours
	Introduction: Importance, Principles of Surveying. Types of Surveying.	4
Unit -1	Chain Surveying: Field Equipment, Methods of chaining, Offsets, Correction in chaining, Obstacles in chain-surveying; plottingDegree of accuracy. Tape and chain corrections	7
Unit -2	Prismatic compass surveying. Instruments; Principle, Procedure and precautions, Closed traverse; Corrections, Local attraction, Plotting	6
	Plane Table Surveying; Field equipments, Methods of plane tabling, Two point and Three point problem, Precautions, Accuracy	6
Unit -3	Levelling; Instruments; Field book recording, Bench Mark and its types, Methods of reduction of levels, Various types of field works,	9

Areas and Volumes: Methods of determining areas and volumes viz., Borrow - pits.	4
--	---

Т

Course Title: FLUID MECHANICS LAB-II (Code: CIV- 402 P)	Syllabus for B.Tech. 4th Semester (Civil Engineering)	Total Course Credit: 1		dit: 1
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

S. No.	Contents	Contact Hours
1	To find friction factor for pipes of different materials.	3
2	To determine the minor head loss coefficient for different pipe fittings.	3
3	To determine the surface profile and total head distribution of a vortex.	3
4	To determine the elements of a hydraulic jump in a rectangular channel.	3
5	To determine the Manning's rugosity coefficient of a laboratory flume.	3
6	To obtain the velocity distribution for an open channel and to determine the values of α , β and n .	3
	Total	18

Course Title: SURVEYING LAB-II (Code: CIV- 403 P)	Syllabus for B.Tech. 4 th Semester (Civil Engineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

Unit No.	Course Contents	Lecture Hours
	 a. Study of Equipment: Ordinary Theodolites, E D M Theodolites and G T S Theodolites. 	
Unit -1	 a. Temporary Adjustments of a Theodolite. b. Field work using a Theodolite: (i). Measurement of Horizontal and Vertical Angles by ordinary and electronic Theodolites. (ii). Measurement of linear and angular measurements using EDM/GTS Instruments (Basic Introduction) 	15
Unit -2	a. TACHEOMETRIC SURVEYING: (i) Study of equipment and graduated staff. (ii) Temporary adjustment b. Field work:	15
Unit -2	 (i). Determination of Constants " K & C " (ii). Stadia Traversing & recording stadia field book (iii). Location of Details by Tacheometric Methods a. Subtense Bar Method: Theory and Field work 	15
	Total	30

Course Title: CONCRETE LAB (Code: CIV- 501 P)	Syllabus for B.Tech. 5th Semester (Civil Engineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	Т	P
50 Marks	50 Marks	0	0	2

- CO1 To handle concrete and its constituents in laboratory.
- CO2 To design experiments related to testing various aspects of concrete and its constituents.
- CO3 To test concrete and concrete structures for various characteristics/properties and compare the same with those given as per IS codes.
- CO4 To understand how concrete behaves in actual buildings.

List of Experiments / Objective

A) CEMENT: Standard Consistency and setting times To determine: i) Standard consistency ii) Initi al setting time iii) Final setting time in conformity with IS code 4031.

Tensile and Compressive strength

i)

To determine the tensile strength and compressive strength of Cement in accordance with IS code - 403

B) AGGREGATES:

Particle size distribution and fineness modulus

i) To determine the particle size distribution and fineness modulus of coarse and fine aggregates (IS - 460). All the relevant tests for aggregates as per I.S. codes.

C) CONCRETE:

Workability test

- To determine the consistency of fresh concrete by slump test.
- ii) To determine the workability of freshly mixed concrete by the compaction factor test

Compressive strength of Cement Concrete (Nominal mix)

i) To determine the cube strength of concrete for different mixes and different W/C ratio

Flexural Strength of Concrete

i) To determine the flexural strength (Modulus of Rupture) of concrete (Nominal Mix)

Ultimate strength of Beams

To determine the flexural ultimate strength of

- i) an under reinforced beam
- ii) an over reinforced beam

Bond strength

To determine the bond strength between

- i) Mild steel plain bars & concrete
- ii) Tor Steel/cold twisted bars and concrete

Course Title: HIGHWAY LAB (Code: CIV- 502 P)	Syllabus for B.Tech. 5th Semester (Civil Engineering)	Total Course Credit: 1		it: 1
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

- CO1 Conduct tests on aggregate; aggregate gradation, specific gravity, aggregate crushing, aggregate abrasion, aggregate impact: follow standard test procedures, design observation sheet, record observations and analyze, presentation and analysis of test results, derive conclusions
- CO2 Conduct tests on aggregate; soundness, flakiness, elongation, combined flakiness & elongation, deleterious material: follow standard test procedures, design observation sheet, record observations and analyse, presentation and analysis of test results, derive conclusions
- CO3 Conduct tests on coarse and fine aggregate and bitumen; fineness modulus, silica content, organic content, silt content, alkalinity, viscosity; penetration, softening point, flash & fire point, ductility, specific gravity,: follow standard test procedures, design observation sheet, record observations and analyze, presentation and analysis of test results, derive conclusions
- CO4 Conduct tests on modified binders, bituminous Mixes and subgrade soil; elastic recovery, separation difference, Marshall stability, flow value, index properties of soil, CBR of soil, subgrade modulus: follow standard test procedure, design observation sheet, record observations and analyse, presentation and analysis of test results, derive conclusions

Expt. No	Contents
1	Tests on aggregate: Aggregate grading, Specific gravity, crushing, Abrasion, Impact test, Soundness, Flakiness, Elongation, Fineness Modulus, Silica content, Organic content, Silt content, Alkalinity, Deleterious material.
2	Tests on bitumen and bituminous mixes: Viscosity, Penetration, Softening point, Flash & fire point, Ductility, Specific gravity, Elastic recovery, Marshall Stability.
3	Tests on subgrade: sub-grade modulus, CBR.

Course Title: GEOTECHICAL LAB- I (Code: CIV- 503 P)	Syllabus for B.Tech. 5th Semester (Civil Engineering)	Total Course Credit: 1		
Internal Examination	External Examination	L	Т	P
50 Marks	50 Marks	0	0	2

COURSE OUTCOMES:

- 1. To determine basic soil properties and consistency limits.
- 2. Draw complete particle size distribution curve of a given soil.
- 3. Determine Compaction characteristics of a given soil.
- 4. Determine Permeability of any given soil specimen.

Expt. No.	Name of the Experiment
1	Soil Identification Tests
2	Water Content Determination Test
3	Field Density Measurement
4	Specific Gravity Test
5	Sieve Analysis Test
6	Sedimentation Analysis Test
7	Atterberg And Shrinkage Limits
8	IS Light Heavy Compaction Tests
9	Permeability Tests

Course Title: STRUCTURAL ENGINEERING LAB- II (Code: CIV- 601 P)	Syllabus for B.Tech. 6th Semester (Civil Engineering) Total Course		ourse Cred	se Credit: 1	
Internal Examination	External Examination	L	T	P	
50 Marks	50 Marks	0	0	2	

- CO1 Ability to demonstrate professional engineering approach, including application of principles and utilization of technical resources such as software's towards solving technical problems requiring civil engineering interventions.
- CO2 Ability to furnish and/or analyse designs and construct structural systems, produce related documents, drawings and reports, and present objective estimates of the related quantities.
- CO3 Ability to conduct field and laboratory investigations pertaining to civil engineering domain, and utilize modern tools and techniques of surveying.
- CO4 To understand the behaviour of structural members

Name of the experiment:

Expt.	Contents
No	
1.	Deflection of curved beams
2.	Behaviour of a portal frame under different load combinations
3.	Deflection of Truss
4.	Behaviour a cantilever beam under symmetrical and un-symmetrical loading
5.	Analysis of an elastically coupled beam
6.	Analysis of a redundant joint
7.	Analysis of two hinged arch

Course Title: TRAFFIC ENGINEERING LAB- II (Code: CIV- 602 P)	Syllabus for B.Tech. 6th Semester (Civil Engineering)	Total Co	Total Course Credit: 1		
Internal Examination	External Examination	L	T	P	
50 Marks	50 Marks	0	0	2	

- CO1 To understand the road user/ driver characteristics in Lab, traffic volume studies in field, intersection volume studies in field: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- CO2 To perform small-network volume studies and OD volume studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- CO3 To understand the traffic speed (spot speed) studies, conduct of travel-time & delay studies, accident studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions
- CO4 To understand and perform pedestrian and parking studies: design of questionnaires, data collection, compilation and analysis of field and lab data, presentation of results and derive conclusions.

Expt.No	Contents
1	Study of Road user characteristics
2	Traffic volume studies
3	Intersection volume studies
4	Small-network volume studies
5	OD volume studies
6	Study of traffic speed
7	Speed & delay studies
8	Travel-time studies
9	Accident studies
10	Pedestrian studies
11	Parking studies

Course Title: GEOTECHNICAL ENGINEERING LAB- II (Code: CIV- 603 P)	Syllabus for B.Tech. 6th Semester (Civil Engineering)	Total Course Credit: 1		
Internal Examination	External Examination	L	T	P
50 Marks	50 Marks	0	0	2

COURSE OUTCOMES

- 1. Determine consolidation characteristics of a given soil sample.
- 2. Obtain shear strength parameters of different types and/or consistencies of soils and under different drainage conditions.
- 3. Perform Standard Penetration test of soil to obtain SPT (N) value.
- 4. Determine allowable soil pressure of soil foundation system by vertical plate load test.

Expt. No.	Name of the Experiment
1	Consolidation Test
2	Direct Shear Test
3	Unconfined Compression Test
4	Unconsolidated Undrained Triaxial Test
5	Vane Shear Test
6	Consolidated Undrained Triaxial Test
7	Standard Penetration Test
8	Plate Load Test