Department of Electrical Engineering National Institute of Technology Srinagar

Tutorial I

Course Title: Digital Signal processing
Semester: Sixth ($\left.6^{\text {th }}\right)$
Date: 23.04.2020
Course Code: ELE-605
Q.1) Find the even and odd parts of the following signals:

1. $\mathrm{x}[\mathrm{n}]=(6,4 \uparrow, 2,2)$
2. $\mathrm{x}[\mathrm{n}]=(-4,5,1, \mathbf{- 2} \uparrow,-3,0,2)$
3. $\mathrm{x}[\mathrm{n}]=a^{|n|}$
4. $\mathrm{x}[\mathrm{n}]=n a^{n} u[n]$
Q.2) Consider a signal $\mathrm{x}[\mathrm{n}]$ as shown in the figure below

5. If $\mathrm{x}[\mathrm{n}]$ is transformed into $y[n]=\frac{2}{3} x[-n-2]-2, \mathrm{y}[\mathrm{n}]$ is
6. What is $\mathrm{y}[\mathrm{n}]=\mathrm{x}[-\mathrm{n} / 3]$
Q.3) Determine whether or not each of the following sequences is periodic. If your answer is yes, determine the period.
7. $\mathrm{x}[\mathrm{n}]=A \cos \left(\frac{3 \pi}{7} n-\frac{\pi}{8}\right)$
8. $\mathrm{x}[\mathrm{n}]=e^{j\left(\frac{n}{8}-\pi\right)}$
Q.4) For each of the following systems, $y(n)$ denotes the output and $x(n)$ the input. Determine for each whether the specified input-output relationship is linear, shift-invariant and causal.
9. $\mathrm{y}[\mathrm{n}]=2 x[n]+3$
10. $\mathrm{y}[\mathrm{n}]=x[n] \sin \left(\frac{2 \pi}{7} n+6\right)$
11. $\mathrm{y}[\mathrm{n}]=(x[n])^{2}$
12. $\mathrm{y}[\mathrm{n}]=\sum_{m=-\infty}^{n} x[m]$
Q.5) For each of the following pairs of sequences, $\mathrm{x}(\mathrm{n})$ represents the input to an LTI system with unit-sample response $h(n)$. Determine each output $y(n)$. Sketch your results.
(a)

$$
x(n)=\alpha^{n} u(n) \quad ; \quad 0<\alpha<1
$$

$$
h(n)=\beta^{n} u(n) \quad ; \quad 0<\beta<1
$$

Q.6) The system shown below contains two LTI subsystems with unit sample responses $h_{1}(\mathrm{n})$ and $h_{2}(\mathrm{n})$, in cascade. Consider $\mathrm{x}[\mathrm{n}]$ as a unit step.

NOTE : Submit the tutorial sheet to aaqi072@gmail.com (by $10^{\text {th }}$ May) and for any queries.

