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In a large interconnected power system with various voltage levels and various capacity
equipments it has been found quite convenient to work with per unit (p.u.) system of quantities
for analysis purposes rather than in absolute values of quantities. Sometimes per cent values
are used instead of p.u. but it is always convenient to use p.u. values. The p.u. value of any
quantity is defined as

The actual value of the quantity (in any unit)
The base or reference value in the same unit

In electrical engineering the three basic quantities are voltage, current and impedance.
If we choose any two of them as the base or reference quantity, the third one automatically will
have a base or reference value depending upon the other two e.g., if V and I are the base
voltage and current in a system, the base impedance of the system is fixed and is given by

 Z = 
V
I

The ratings of the equipments in a power system are given in terms of operating voltage
and the capacity in kVA. Therefore, it is found convenient and useful to select voltage and kVA
as the base quantities. Let Vb be the base voltage and kVAb be the base kilovoltamperes, then

Vp.u. = 
V

Vb

actual

The base current = 
kVA

V
b

b

× 1000

∴ p.u. current = 
Actual current
Base current

Actual current
=

×kVAb 1000
 × Vb

Base impedance = 
Base voltage
Base current

= 
V

kVA
b

b

2

1000×

∴ p.u. impedance = 
Actual impedance
Base impedance

= 
Z kVA

V

Z MVA

kV
b

b

b

b

. .

( )

×
=

1000
2 2

This means that the p.u. impedance is directly proportional to the base kVA and inversely
proportional to square of base voltage. Normally the p.u. impedance of various equipments
corresponding to its own rating voltage and kVA are given and since we choose one common
base kVA and voltage for the whole system, therefore, it is desired to find out the p.u. impedance
of the various equipments corresponding to the common base voltage and kVA. If the individual
quantities are Zp.u. old, kVAold and Vold and the common base quantities are Zp.u. new, kVAnew and
Vnew, then making use of the relation above,

Zp.u. new = Zp.u. old . kVA
kVA

V
V

new

old

old

new
.
�

��
�

��

2

(1.23)
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This is a very important relation used in power system analysis.

The p.u. impedance of an equipment corresponding to its own rating is given by

Zp.u. = 
IZ
V

where Z is the absolute value of the impedance of the equipment. It is seen that the p.u.
representation of the impedance of an equipment is more meaningful than its absolute value
e.g., saying that the impedance of a machine is 10 ohms does not give any idea regarding the
size of the machine. For a large size machine 10 ohms appears to be quite large, whereas for
small machines 10 ohms is very small. Whereas for equipments of the same general type the
p.u. volt drops and losses are in the same order regardless of size.

With p.u. system there is less chance of making mistake in phase and line voltages,
single phase or three phase quantities. Also the p.u. impedance of the transformer is same
whether referred on to primary or secondary side of the transformer which is not the case
when considering absolute value of these impedances. This is illustrated below:

Let the impedance of the transformer referred to primary side be Zp and that on the
secondary side be Zs, then

Zp = Zs 
V

V
p

s

�

��
�

��

2

where Vp and Vs are the primary and secondary voltages of the transformer.

Now  Zp p.u. = 
Z I

V
Z

V

V

I

V
p p

p
s

p

s

p

p
=

�

��
�

��

2

.

     = Zs . 
V I

V
Z

V I

V

Z I
V

p p

s
s

s s

s

s s

s
2 2= =.

     = Zs p.u.

From this it is clear that the p.u. impedance of the transformer referred to primary side
Zp p.u. is equal to the p.u. impedance of the transformer referred to the secondary side Zs p.u..
This is a great advantage of p.u. system of calculation.

The base values in a system are selected in such a way that the p.u. voltages and currents
in system are approximately unity. Sometimes the base kVA is chosen equal to the sum of the
ratings of the various equipments on the system or equal to the capacity of the largest unit.

The different voltage levels in a power system are due to the presence of transformers.
Therefore, the procedure for selecting base voltage is as follows: A voltage corresponding to
any part of the system could be taken as a base and the base voltages in other parts of the
circuit, separated from the original part by transformers is related through the turns ratio of
the transformers. This is very important. Say, if the base voltage on primary side is Vpb then
on the secondary side of the transformer the base voltage will be Vsb = Vpb(Ns/Np), where Ns
and Np are the turns of the transformer on secondary and primary side respectively.
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The following example illustrates the procedure for selecting the base quantities in
various parts of the system and their effect on the p.u. values of the impedances of the various
equipments.

Example 1.1: A 100 MVA, 33 kV 3-phase generator has a subtransient reactance of
15%. The generator is connected to the motors through a transmission line and transformers
as shown in Fig. E1.1a. The motors have rated inputs of 30 MVA, 20 MVA and 50 MVA at
30 kV with 20% subtransient reactance. The 3-phase transformers are rated at 110 MVA,
32 kV, ∆/110 kV Y with leakage reactance 8%. The line has a reactance of 50 ohms. Selecting
the generator rating as the base quantities in the generator circuit, determine the base quantities
in other parts of the system and evaluate the corresponding p.u. values.

100 MVA, 33 kV
15%

j 50 �

���
��	
	�

Solution: Assuming base values as 100 MVA and 33 kV in the generator circuit, the
p.u. reactance of generator will be 15%. The base value of voltage in the line will be

       33 × 
110
32

 = 113.43 kV

In the motor circuit,

113.43 × 
32

110
 = 33 kV

The reactance of the transformer given is 8% corresponding to 110 MVA, 32 kV. Therefore,
corresponding to 100 MVA and 33 kV the p.u. reactance will be (using Eq. 1.23).

   0.08 × 
100
110

32
33

2

× �
��
�
��

 = 0.06838 p.u.

The p.u. impedance of line = 
50 100

113.43 2
×

( )
 = 0.3886 p.u.

The p.u. reactance of motor 1 = 0.2 × 
100
30

30
33

2

× �
��
�
��

 = 0.5509 p.u.

motor 2 = 0.2 × 
100
20

30
33

2

× �
��
�
��

 = 0.826 p.u.

motor 3 = 0.2 × 
100
50

30
33

2

× �
��
�
��

 = 0.3305 p.u.
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The reactance diagram for the system is shown in Fig. E1.1b.

j 0.06838 � j 0.3886 � j 0.06838 �

j 0.15 �
j 0.5509 � j 0.3305 �

j 0.826 �

1 2 3

���
��	
	�������������"����5�+����6�5 ���3%3%

�������

1.1. Two generators rated at 10 MVA, 13.2 kV and 15 MVA, 13.2 kV are connected in parallel to a
busbar. They feed supply to two motors of inputs 8 MVA and 12 MVA respectively. The operating
voltage of motors is 12.5 kV. Assuming base quantities as 50 MVA and 13.8 kV draw the reac-
tance diagram. The per cent reactance for generators is 15% and that for motors is 20%.

1.2. Three generators are rated as follows: Generator 1–100 MVA, 33 kV, reactance 10%; Generator
2–150 MVA, 32 kV, reactance 8%; Generator 3–110 MVA, 30 kV, reactance 12%. Determine the
reactance of the generator corresponding to base values of 200 MVA, 35 kV.

1.3. A 3-bus system is given in Fig. P1.3. The ratings of the various components are listed below:

Generator 1 = 50 MVA, 13.8 kV, X″ = 0.15 p.u.

Generator 2 = 40 MVA, 13.2 kV, X″ = 0.20

Generator 3 = 30 MVA, 11 kV, X″ = 0.25

Transformer 1 = 45 MVA, 11 kV, ∆/110 kV Y, X = 0.1 p.u.

Transformer 2 = 25 MVA, 12.5 kV, ∆/115 kV Y, X = 0.15 p.u.

Transformer 3 = 40 MVA, 12.5 kV, ∆/115 kV Y, X = 0.1 p.u.

The line impedances are shown in Fig. P1.3. Determine the reactance diagram based on 50 MVA
and 13.8 kV as base quantities in Generator 1.

G1 G2

j 50 �

j 25 � j 25 �

G3

���
��	
�

www.EngineeringBooksPdf.com



 

BEE701    POWER SYSTEM ANALYSIS 

UNIT I 

POWER SYSTEM COMPONENTS 

 

Power system analysis  

The evaluation of power system is called as power system analysis  

 

Functions of power system analysis  

 To monitor the voltage at various buses, real and reactive power flow between buses. 

 To design the circuit breakers.  

 To plan future expansion of the existing system  

 To analyze the system under different fault conditions  

 To study the ability of the system for small and large disturbances (Stability studies)  
 

COMPONENTS OF A POWER SYSTEM 

1.Alternator 

2.Power transformer 

3.Transmission lines 

4.Substation transformer 

5.Distribution transformer 

6.Loads 

 

SINGLE LINE DIAGRAM 

A single line diagram is diagrammatic representation of power system in which the components are 

represented by their symbols and interconnection between them are shown by a straight 

line9eventhough the system is three phase system0.The ratings and the impedances of the 

components are also marked on the single line diagram. 



 

 

Purpose of using single line diagram  

The purpose of the single line diagram is to supply in concise form of the significant information 

about the system.  

Per unit value.  

The per unit value of any quantity is defined as the ratio of the actual value of the any quantity to 

the base value of the same quantity as a decimal. 

per unit=actual value/base value 

Need for base values  

The components or various sections of power system may operate at different voltage and power 

levels. It will be convenient for analysis of power system if the voltage, power, current and 

impedance rating of components of power system are expressed with reference to a common value 

called base value. 

 

Advantages of per unit system  

i. Per unit data representation yields valuable relative magnitude information.  

ii. Circuit analysis of systems containing transformers of various transformation ratios is greatly 

simplified.  

iii. The p.u systems are ideal for the computerized analysis and simulation of complex power system 

problems.  

iv. Manufacturers usually specify the impedance values of equivalent in per unit of the equipments 

rating. If the any data is not available, it is easier to assume its per unit value than its numerical value.  



v. The ohmic values of impedances are refereed to secondary is different from the value as referee to 

primary. However, if base values are selected properly, the p.u impedance is the same on the two 

sides of the transformer.  

vi. The circuit laws are valid in p.u systems, and the power and voltages equations are simplified 

since the factors of √3 and 3 are eliminated.  

 

Change the base impedance from one set of base values to another set 

Let Z=Actual impedance ,Ω 

Zb=Base  impedance ,Ω 

Per unit impedance of a circuit element=
𝑍

𝑍𝑏
=

𝑍

 𝑘𝑉𝑏  2

𝑀𝑉𝐴 𝑏

=
𝑍×𝑀𝑉𝐴𝑏

 𝑘𝑉𝑏  2
  (1) 

The eqn 1 show that the per unit impedance is directly proportional to base 

megavoltampere and inversely proportional to the square of the base voltage. 

Using Eqn 1 we can derive an expression to convert the p.u impedance  expressed 

in one base value ( old base) to another base (new base) 

Let kVb,oldand MVAb,old represents old base values and kVb,newand  MVA b ,new 

represent new base value 

Let Zp.u,old=p.u. impedance of a circuit element calculated on old base 

Zp.u,new=p.u. impedance of a circuit element calculated on new base 

If old base values are used to compute the p.u.impedance of a circuit element ,with 

impedance Z then eqn 1 can be written as 

𝑍𝑝 .𝑢 ,𝑜𝑙𝑑 =
𝑍 × 𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑

 𝑘𝑉𝑏 ,𝑜𝑙𝑑  
2  

     𝑍 = 𝑍𝑝 .𝑢 ,𝑜𝑙𝑑
 𝑘𝑉𝑏 ,𝑜𝑙𝑑  

2

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
   (2) 

If the new base values are used to compute thep.u. impedance of a circuit element 

with impedance Z, then eqn 1 can be written as  

 



    𝑍𝑝 .𝑢 ,𝑛𝑒𝑤 =
𝑍×𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

 𝑘𝑉𝑏 ,𝑛𝑒𝑤  
2     (3) 

On substituting for Z from eqn 2 in eqn 3 we get 

𝑍𝑝 .𝑢 ,𝑛𝑒𝑤 = 𝑍𝑝 .𝑢 .𝑜𝑙𝑑

 𝑘𝑉𝑏 ,𝑜𝑙𝑑  
2

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
×

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

 𝑘𝑉𝑏 ,𝑛𝑒𝑤  
2 

𝑍𝑝.𝑢,𝑛𝑒𝑤 = 𝑍𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
     (4) 

The eqn 4 is used to convert the p.u.impedance expressed on one base value to another base 

  

MODELLING OF GENERATOR AND SYNCHRONOUS MOTOR 

                                      

1Φ equivalent circuit of generator   1Φ equivalent circuit of synchronous motor 

 

 

 

 



MODELLING OF TRANSFORMER 

 

 

 

 

 

 

 

 

MODELLING OF TRANSMISSION LINE 

 

T type    Π type  

  

 

 

 



 

MODELLING OF INDUCTION MOTOR 

 

 

Impedance diagram & approximations made in impedance diagram  

The impedance diagram is the equivalent circuit of power system in which the various 

components of power system are represented by their approximate or simplified equivalent 

circuits. The impedance diagram is used for load flow studies.  

Approximation:  

(i) The neutral reactances are neglected.  

(ii) The shunt branches in equivalent circuit of transformers are neglected. 

Reactance diagram & approximations made in reactance diagram 

The reactance diagram is the simplified equivalent circuit of power system in which the various 

components of power system are represented by their reactances. The reactance diagram can be 

obtained from impedance diagram if all the resistive components are neglected. The reactance 

diagram is used for fault calculations. 

Approximation:  

(i) The neutral reactances are neglected.  

(ii) The shunt branches in equivalent circuit of transformers are neglected.  

(iii) The resistances are neglected.  

(iv) All static loads are neglected.  

(v) The capacitance of transmission lines are neglected. 



 

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGLE  LINE 

DIAGRAM 

1.Select a base power kVAb or MVAb  

2.Select a base voltage kVb  

3. The voltage conversion is achieved by means of transformer kVb on LT section= kVb on HT section   

                                                                                                                  x LT voltage rating/HT voltage rating 

4. When specified reactance of a component is in ohms 

    p.u reactance=actual reactance/base reactance 

    specified reactance of a component is in p.u  

 

EXAMPLE 

1. The single line diagram of an unloaded power system is shown in Fig 1.The  generator transformer 

ratings are as follows. 

   G1=20 MVA, 11 kV, X’’=25% 

   G2=30 MVA, 18 kV, X’’=25% 

   G3=30 MVA, 20 kV, X’’=21% 

    T1=25 MVA, 220/13.8 kV (∆/Y), X=15% 

    T2=3 single phase units each rated 10 MVA, 127/18 kV(Y/∆), X=15% 

    T3=15 MVA, 220/20 kV(Y/∆), X=15% 

    Draw the reactance diagram using a base of 50 MVA and 11 kV on the generator1. 

 
                                                                 Fig 1 

SOLUTION 



Base megavoltampere,MVAb,new=50 MVA 

 

Base kilovolt kVb,new=11  kV ( generator side) 

 

FORMULA 

The new p.u. reactance  𝑋𝑝𝑢 ,𝑛𝑒𝑤  =𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

 

Reactance of Generator G 

  

kVb,old=11 kV     kVb,new=11 kV 

 

MVAb,old= 20 MVA  MVAb,new=50 MVA 

 

Xp.u,old=0.25p.u 

 The new p.u. reactance of Generator G=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.25 ×  
11

11
 

2

×  
50

20
  =j0.625p.u 

Reactance of Transformer T1  

 

kVb,old=11 kV     kVb,new=11  kV 

 

MVAb,old= 25 MVA  MVAb,new=50 MVA 

Xp.u,old=0.15p.u 

 The new p.u. reactance of Transformer T1=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.15 ×  
11

11
 

2

×  
50

25
  =j0.3 p.u 

Reactance of Transmission Line 

It is connected to the HT side of the Transformer T1 

Base kV on HT side of transformer T 1 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐿𝑇 𝑠𝑖𝑑𝑒 ×
𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔

𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔
 

        =11 ×
220

11
= 220 𝑘𝑉 

 

Actual Impedance X actual= 100ohm 

 Base impedance X base=
 𝑘𝑉𝑏 ,𝑛𝑒𝑤  

2

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤
=

2202

50
= 968 𝑜𝑚 



p.u reactance of 100 Ω transmission line=
𝐴𝑐𝑡𝑢𝑎𝑙  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚

𝐵𝑎𝑠𝑒  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚
=

100

968
= 𝑗0.103 𝑝. 𝑢 

p.u reactance of 150 Ω transmission line=
𝐴𝑐𝑡𝑢𝑎𝑙  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚

𝐵𝑎𝑠𝑒  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚
=

150

968
= 𝑗0.154 𝑝. 𝑢 

 

Reactance of Transformer T2  

  

 

kVb,old=127 * √3 kV =220 kV    kVb,new=220  kV 

 

MVAb,old= 10 * 3=30 MVA   MVAb,new=50 MVA 

 

Xp.u,old=0.15p.u 

 The new p.u. reactance of Transformer T2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

    =0.15 ×  
220

220
 

2

×  
50

30
  = j0.25 p.u 

Reactance of  Generator  G2 

 

It is connected to the LT side of the Transformer T2 

 

Base kV on LT side of transformer T 2 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 ×
𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔
 

        =220 ×
18

220
= 18 𝑘𝑉 

 

  

kVb,old=18 kV     kVb,new=18  kV 

 

MVAb,old= 30 MVA  MVAb,new=50 MVA 

 

Xp.u,old=0.25 p.u 

 The new p.u. reactance of Generator G 2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.25 ×  
18

18
 

2

×  
50

30
  =j0.4167 p.u 

Reactance of Transformer T3  

  

 

kVb,old=20 kV      kVb,new=20  kV 

 

MVAb,old= 20 MVA   MVAb,new=50 MVA 

 



Xp.u,old=0.15p.u 

 The new p.u. reactance of Transformer T3=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

    =0.15 ×  
20

20
 

2

×  
50

30
  = j0.25 p.u 

 

Reactance of  Generator  G3 

 

It is connected to the LT side of the Transformer T3 

 

Base kV on LT side of transformer T 3 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 ×
𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔
 

        =220 ×
20

220
= 20 𝑘𝑉 

 

  

kVb,old=20 kV     kVb,new=20  kV 

 

MVAb,old= 30 MVA  MVAb,new=50 MVA 

 

Xp.u,old=0.21 p.u 

 The new p.u. reactance of Generator G 3=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.21 ×  
20

20
 

2

×  
50

30
  =j0.35 p.u 

 

2) Draw the reactance diagram for the power system shown in fig 4 .Use a base of 50MVA  230 kV in 30 

Ω line. The ratings of the generator, motor and transformers are         

     Generator = 20 MVA, 20 kV, X=20% 

     Motor = 35 MVA, 13.2 kV, X=25% 

     T1 = 25 MVA, 18/230 kV (Y/Y), X=10% 

     T2 = 45 MVA, 230/13.8 kV (Y/∆), X=15%      

 



Fig 4 

Solution 

Base megavoltampere,MVAb,new=50 MVA 

 

Base kilovolt kVb,new=230  kV ( Transmission line  side) 

 

FORMULA 

The new p.u. reactance  𝑋𝑝𝑢 ,𝑛𝑒𝑤  =𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

 

Reactance of Generator G 

It is connected to the LT side of the T1 transformer 

Base kV on LT side of transformer T 1 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 ×
𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎 𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔
 

        =230 ×
18

230
= 18 𝑘𝑉 

 

  

kVb,old=20 kV     kVb,new=18 kV 

 

MVAb,old= 20 MVA  MVAb,new=50 MVA 

 

Xp.u,old=0.2p.u 

 The new p.u. reactance of Generator G=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.2 ×  
20

18
 

2

×  
50

20
  =j0.617 p.u 

 

Reactance of Transformer T1  

 

kVb,old=18 kV     kVb,new=18  kV 

 

MVAb,old= 25 MVA  MVAb,new=50 MVA 

Xp.u,old=0.1p.u 

 The new p.u. reactance of Transformer T1=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.1 ×  
18

18
 

2

×  
50

25
  =j0.2 p.u 

 

Reactance of Transmission Line 

It is connected to the HT side of the Transformer T1 



Actual Impedance X actual= j30 ohm 

 Base impedance X base=
 𝑘𝑉𝑏 ,𝑛𝑒𝑤  

2

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤
=

2302

50
= 1058 𝑜𝑚 

p.u reactance of  j30 Ω transmission line=
𝐴𝑐𝑡𝑢𝑎𝑙  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚

𝐵𝑎𝑠𝑒  𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜𝑚
=

𝑗30

1058
= 𝑗0.028 𝑝. 𝑢 

 

 

Reactance of Transformer T2  

  

 

kVb,old=230 kV    kVb,new=230  kV 

 

MVAb,old= 45 MVA   MVAb,new=50 MVA 

 

Xp.u,old=0.15p.u 

 The new p.u. reactance of Transformer T2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

    =0.15 ×  
230

230
 

2

×  
50

45
  = j0.166 p.u 

Reactance of  Motor M2 

 

It is connected to the LT side of the Transformer T2 

 

Base kV on LT side of transformer T 2 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 ×
𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  𝑟𝑎𝑡𝑖𝑛𝑔
 

        =230 ×
13.8

230
= 13.8 𝑘𝑉 

 

  

kVb,old=13.2 kV     kVb,new=13.8  kV 

 

MVAb,old= 35 MVA  MVAb,new=50 MVA 

 

Xp.u,old=0.25 p.u 

 The new p.u. reactance of Generator G 2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 ×  
𝑘𝑉𝑏 ,𝑜𝑙𝑑

𝑘𝑉𝑏 ,𝑛𝑒𝑤
 

2

×  
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤

𝑀𝑉𝐴𝑏 ,𝑜𝑙𝑑
  

     =0.25 ×  
13.2

13.8
 

2

×  
50

35
  =j0.326 p.u 
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