NA	ME OF THE DEPARTMENT:	Electrical Engineering
1	Subject Code ELE-401	Course Title ELECTRICAL MACHINES-I
2	Contact Hours	L 3 T 1 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weight age M-I 2 0	M-II 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4 4	Semester Autumn Spring

6 **Objective:**

The objective of the course is to describe the operating principles, characteristics & applications of transformers and rotating electric machines (DC motors and generators)

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Transformers	17
	Single Phase Transformers	
	Introduction, classification, construction, electromotive force (e. m. f.) equation, Equivalent circu model, Phasor diagrams, Losses and efficiency, Voltage regulation, Transformer tests (polarity test, open circuit test and short circuit test), All day efficiency, Frequency response, Parallel operation, Auto-transformers, Excitation phenomenon in transformers	
	Three Phase Transformers	
	Construction, Connections, Open delta, Ratings, Phase Conversions	
2.	Special Purpose Transformers Impedance matching transformers, Isolation transformers, constant current and constant voltage Transformers, Instrument Transformers (Introduction) Principles of Electromechanical Energy Conversion	05
3.	Energy conversion via electric and magnetic fields, Field energy and mechanical force, energy balance, co energy Direct current Machines: Generators and Motors.	17
	General introduction, principles of operation of D.C machines, construction of D.C machines (Generators and motors), e.m.f and torque equations, power stages and efficiency, commutation and armature reaction, characteristics of D.C Generators, parallel operation, torque and speed of D.C Motors, characteristics of various types of D.C motors, speed control of D.C motors, starting and electric braking.	ŝ
4.	Electric drives, characteristics of electric drives, selection of D. C. motors for domestic,	05
	commercial and industrial applications	12
1		42

S.No	Name of Book	Author	Publisher	Year of Publication
1	Electric Machinery	Fitzgerald, Kingslay,	Tata McGraw-Hill	6 th Edition
		Umans		
2	Electric Machinery Fundamentals	Chapman	McGraw-Hill Higher	4th Edition
			Education	
3	Electric Machines	Nagrath and Kothari	Tata McGraw-Hill	3 rd Edition
4	Electric Machinery and	Guru, Hiziroglu	Oxford University press	3 rd Edition
	Transformer			
5	Electric Machinery	P.S.Bimbhra	Khanna Publishers	4th Edition
6	Basic Electric Machines	Vincent Deltoro	Prentice Hall	

1	Subject Code	ELE 401-P		Course Title	ELECT	RICAL MACH	-INES-I Lab-I
2	Contact Hours			L 0	Т	0	P 2
3	Examination Durati	ion (Hrs):		Theory 0	0	Practical	0 2
4	Relative Weight age			MSLE 2	2 5	ESLE	2 5
5	Credits:	0 1	4 th Semester	Autumn	Spri	ng	

6 Objective: The objective of the lab is to familiarize the students with different electric machines, their operation and working and to perform various tests on them.

S.No	Experiments
1	To perform open circuit and short circuit tests on a single-phase transformer
2	To perform polarity test on a single phase transformer
3	To determine the efficiency and voltage regulation of a single phase transformer
4	To perform Sumpner's test on two identical transformers
5	To study three phase connections on a bank of three single phase transformers
6	To study various parts of a dc machine and draw sketches of the same
7	To plot the saturation curve of a dc machine
8	To plot the external characteristics of a separately excited dc generator.
9	To study the voltage build up of a dc shunt generator
10	To plot the external characteristic of a dc shunt generator and compare the characteristics with that of a separately excited generator
11	To plot the external characteristics of a dc series generator.
12	To plot the external characteristic of a dc compound generator and compare the characteristics when run as a shunt generator, an over compound generator, a flat compound generator, an
	under compound generator and differentially compounded generator.

NA	ME OF THE DEPAR	TMENT:	Electrical Er	ngineering		
1	Subject Code	ELE402	Course Title	CONTROL	SYSTEMS -I	
2	Contact Hours		L	02	T 01	P 0
3	Examination Dura	ation (Hrs):	1	heory 03	Practical	0 0
4	Relative Weight age	e M-I 2 0	M-II 2 0	ASM 1 0	ME 5	0 PRE 0 0
5	Credits:	0 3	4 th Semester	utumn	√ Spring	

6 Objective: The objective of the course is to introduce the students to modeling, analysis and design of control systems which are an integral part of modern society and have widespread application in science and industry.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction to continuous control systems:	04
	Definition of a control system, open-loop, closed loop (automatic and manual)	
	control.	
2.	Mathematical modeling: Transfer functions, block diagrams, signal flow graphs	08
3.	First and second order system:	10
4.	Example of first and second order systems, responses of these systems to step, ramp, parabolic and sinusoidal inputs, transient, steady state and error analysis Stability studies:	10
5.	Definition of stability, stability and pole locations, stability and Routh Table, stability and frequency response bode plot, polar plot, Nyquists criterion, root locus. Proportional, Integral, Derivative (P.I.D) control. Compensator design Lead – lag compensators. Modeling of dynamic systems in state space (Introduction).	10
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of Publication
1	Control Systems Engineering	Norman S. Nise	John wiley	2009
2	Control systems(Principles and	M.Gopal	Tata McGraw-Hill	Second
	Design)		Publishing	Edition
3	Control systems	A.Anand Kumar	PHI Learning	2009
			Private limited	
4	Feedback control of dynamic systems	Franklin and Powel.	Prentice Hall	5 th Edition
5.	Design of feedback control systems	Stefani	Oxford university	
			press	

NAM	1E OF THE DEPART	MENT:	Electrica	al Engineering
1	Subject Code	ELE403	Course Title	ELECTRICAL MEASUREMENTS AND MEASURING INSTRUMENTS
2	Contact Hours			L 02 T 01 P 0
3	Examination Dura	tion (Hrs):		Theory 0 3 Practical 0 0
4	Relative Weight age	MH 2 0	M-II 2	0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits:	0 4	4 th Semester	Autumn Spring

6 Objective: The objective of the course is to introduce the students to the basic concepts of measurement, different measuring devices and various techniques used in the measurement of electrical quantities.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Definition of basic terms used in measurements	02
2.		14
3.	Electro-mechanical indicating instruments. Classification, efforts utilized in measuring instruments, various forces in an electro- mechanical indicating instrument, errors and their types, various methods of damping, galvanometers (D' Arsonal and Ballistic) Ammeters and Voltmeters (PVMC, Induction, Electrostatic and Dynamometer type), errors in voltmeters and ammeters, extension of instrument range, ammeter shunts, voltmeter multipliers Measurement of Power, Energy and Power Factor Power measurement in three phase a.c. circuits using single phase and 3-phase watt meter, measurement of reactive power (Single phase and 3-phase), Energy measurement using induction type meter, Energy meter testing, Power factor meter.	07
4.	Measurement of Resistance: Resistance classification, Measurement of Low resistance using potentiometer method and Kelvin double bridge, Measurement of medium resistance using ammeter-voltmeter method, substitution method, Wheatstone bridge, Measurement of high resistance using loss of charge method, Meggar.	06
5. 6.	Measurement of Inductance, Capacitance and Frequency using a.c bridges. Potentiometers; D.C potentiometers, Crompton potentiometer, application of D.C potentiometer, A.C potentiometers, Drysdale Tinsley and Cambell Iarsen Potentiometers, Applications of A.C Potentiometers	05 04
7.	Virtual Instrumentation: Introduction to virtual Instrumentation. Measurement of Electrical and non-electrical quantities using virtual instruments.	04
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Electrical Measurements and	Golding, Widdis	Pitman	5 th Edition
	Measuring Instruments			
2	Electrical Electronic Measurements	A.K.Sawhney.	Dhanpat Rai	2006

NAME OF THE DEPARTMENT:

Electrical Engineering

1	Subject Code ELE-403P	Course Title ELECTRICAL MEASUREMENTS AND MEASURING INSTRUMENTS LABORATORY
2	Contact Hours	L 0 T 0 P 2
3	Examination Duration (Hrs):	Theory 0 0 Practical 0 2
4	Relative Weight age	MSLE 2 5 ESLE 2 5
5	Credits: 0 1	4 th Semester Autumn Spring

6 Objective: The objective of the lab is to make students aware of various measuring techniques and various measuring instruments used in the measurement of electric quantities.

S.No	Experiments
1	Measurement in single phase and three phase circuits using single phase and three phase wattmeters.
2	Energy Measurement using watt-hour meter as well as using wattmeter and stop watch.
3	To study the constructional details of an electromechanical indicating instrument with the help of demonstration type of instrument
4	Measurement of Inductance and capacitance using Bridge techniques(Anderson's Bridge, Wheat Stone's Bridge.)
5	Measurement of Resistance by different methods (Loss of charge method, substitution Method, Kelvin's Double Bridge)
6	To Study RC and LC models of a transmission line and observe the variation of voltage magnitude and phase along the line.
7	Measurement of Electrical and Non Electrical quantities using virtual instrumentation. (Dasylab)

NAME OF THE DEPARTMENT:		Electrical Engineering	g	
1	Subject Code	FI F	Course Title	

1	Subject Code ELE-404	Course Title NON-CONVENTIONAL ENERGY SOURCES
2	Contact Hours	L 03 T 0 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weight age MI 2 0	M-II 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 3	4 th Semester Autumn Spring

6 Objective: The objective of this course is to introduce the students to the different Nonconventional and renewable energy sources, their advantages and applications in day to day life and the methods of conversion of energy from these resources into usable form.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Review of conventional & Non-conventional Energy resources, Energy problem, Energy & environment, Need for renewable.	08
	Relevant energy conversion systems & Technologies, Electricity generation, Rural Energy.	
2.	Wind & Solar Energy, Principles of power Gen. From wind, site selection, wind speed & power duration curves, wind power system components, Wind-Diesel Hybrid systems & recent developments. Solar radiation, solar collectors – flat plate & concentrating collectors, Solar water heaters & solar thermal power plants. Miscellaneous Applications	11
3.	Electric Power Generation from Tidal, OTEC & Geothermal energy. Simple power plant based on Tidal / OTEC / Geothermal	06
4.	Direct Energy Conversion techniques, Why Direct Energy Conversion, Solar cell, principle and operation. Solar module & array, solar photovoltaic power system / solar wind Diesel system – operation & design. MHD & Thermo-Electric power generation.	08
5.	Energy conservation. Energy conservation in Transport sector, rural energy, urban energy, Industrial energy, power generation & distribution, Energy efficient buildings. Energy audit. Typical case studies.	05
6.	Future Energy Sources. Nuclear Fusion Energy – Tokamak reactor, Hydrogen Energy An introduction to power generation, advantages and limitations. Exploring new energy sources. Economic evaluation of energy systems.	04
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Non-Conventional Energy Resources	R.K Singal	Dhanpat Rai publication	
2	,- Energy Technology	S. Rao, B.B Parlekar	Khanna Publications	3 rd edition
3	Wind & Solar Power System	M.Patel	CRC Press	
4	Principle of Energy Conversion		Culp-Mc Graw Hill	
			Publication	

NA	ME OF THE DEPARTMENT	Electric	al Engineering		
1	Subject Code ECE	-402	Course Title	ELECTRONICS -II	
2	Contact Hours		L 2	T 1	P 0
3	Examination Duration (H	rs):	Theory 0	3 Practical	
4	Relative Weight age	H 2 0 MH 2	0 ASM 1	0 ME 5	0 PRE 0 0
5	Credits: 0	4 4 th Semeste	r Autumn	Spring	

6 Objective: The objective of the course is to introduce the students with basic electronic circuits, their operations and applications

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Feedback Basics	10
	Negative feedback, Effect of negative feedback on the performance of amplifiers	
	e.g. on bandwidth. Types of feedback amplifiers, current shunt, current series,	
~	voltage shunt, and voltage series feedback. Analysis of feedback amplifiers circuits	05
2.	Sinusoidal Uscillators:-	05
	basic operations, analysis of general oscillator circuit, bank lausens circuites types of oscillator circuites	
3	types of oscillator circuits and their analysis, besign of practical oscillator circuits.	07
0.		01
	Classification of power amplifiers, Class A, Class B, Class AB and Class C power	
	amplifiers; analysis and design. Power supplies and IC regulators	
4.		10
	Operational Amplifiers:-	
	Operational amplifiers stages, Differential amplifier, CWRR, Cascade amplifier, Ideal	
	and practical operational amplifier characteristics and properties OP amp	
	differentiator and integrator registers etc. OP amo in analog computation	
	Frequency response. Gain Bandwidth product. Signal to noise ratio	
5.		05
	Multivibrators and Wave Form Generators	
	Bistable, Monostable and astable multivibrators circuits, and their analysis. Wave	
	form generators, triangular and square wave generators.	
6.		05
	Logic families:	
	Introduction to DIL, IIL, EUL, RIL	
	MVDS LUgic lating, CIVIDS, FSEUCO-HIVDS, Fass Hansiston.	
	Total Contact Hours	12
		42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Integrated circuits	Millman & Halkias	Tata Mc-Graw Hill	2008
2	Microelectronic circuits	Sedra and Smith	Oxford university	5 th Edition
			Press	
3	Introduction to Electronic Circuit	Spencer and Ghausi		
	Design			

1	Subject Code ECE -402-P	Course Title ELECTRONICS LAB - II
2	Contact Hours	L 0 T 0 P 2
3	Examination Duration (Hrs):	Theory 0 0 Practical 0 2
4	Relative Weight age	MSLE 2 5 ESLE 2 5
5	Credits: 0 1	4 th Semester Autumn Spring

6 Objective: The objective of the lab is to make the students familirise with working of various electronic circuitry

S.No	Experiments
1	To assemble a differential amplifier and obtain its CMRR
2	(i) To assemble current series feedback amplifier and study its performance.
	(ii) To assemble a voltage shunts feedback amplifier and study its performance.
3	To assemble an RC phase shift oscillator.
4	(a) Study performance of multivibrator circuits using 555 chip in following
	Modes:
	(I) Bistable
	(ii) Asiable (iii) Monostable
	(b) Use of 555 chip as a timer circuit.
5	To assemble a schmitt trigger ckt. And to obtain its characteristics and to use it as Squaring circuit.
6	To assemble a Class A power amplifier and to determine its power gain.
7	To study different andications of OP_AMPS
1	
	(i) OP- AMP as an inverting amplifier.
	(ii) OP-AMP as a non-inverting amplifier.
	(iii) OP-AMP as an integrator.
	(iv) OP-AMP as a differentiator.
8	To study the performance of a voltage regulator IC chip.
9	To measure the following parameters of a typical OP-AMP.
	(i) I/D Impedance
	(ii) (ii) O/P Impedance
	(iii) (iii) Slew rate (iv) CMRR
	(iv) (v) Freq. response.
10	MINI PROJECT:
	To design & fabricate a regulated power supply.

NAV	IE OF THE DEPARTMENT:	ectrical Engineering	
1	Subject Code CIV-401	Course Title HYDAULIC	S AND HYDRAULIC
2	Contact Hours	L 02 T 01	P 0
3	Examination Duration (Hrs):	Theory 0 3	actical 0 0
4 F	Relative Weight age MI 2 0 MI	2 0 ASM 1 0 ME	5 0 PRE 0 0
5	Credits: 3 4th Ser	nester / Autumn Spring]

6 Objective: To study water related phenomenon and their effect on the design and analysis of water retaining structures and water regulating structures

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	INTRODUCTION:	03
	PHYSICAL Properties of Fluids.	
2.	Fluid Statics:	05
	Pressure Intensity, Pascal's law, pressure density height relationships, manometers, pressure on plain and curved surfaces, centre of pressure.	
3.	Kinematics of Fluid Flow:	04
	Types of flows, stream lines, streak lines and oath lines, continuity equation.	
4.	Dynamics of fluid Flow:	07
	Euler's equation of motion along a stream line and its integration to yield Bernouli's equation flow measurement, pitot tube, prandtl tube, Venturimeter, orifice meter, orifices, Weirs and Matchces.	
5.	Flow through Pipes:	06
	Hydraulic grade line, Darcey-weisbachh formulla, Design of pipes, Equivallent diameter of pipes, Transmission of power through pipes.	
6.	Flow in open Channels:Chezy's formula, Mannings formula. Design of Cannels, Economic seciton.	05
7.	Hydraulic Machines:	07
	Types of turbines, description and principles of Impulse and reaction turbines, unit quantities and specific speed, run a ay speed, turbine characteristics, selection of turbines, governing of turbines, centrifugal pumps, specific speed, Power requirement, Reciprocating pumps.	
8	Layout of power House:	05
	General layout and arrangement of Hydropower units.	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Fluid Mechanics & Fluid Power	Dr D.S.Kumar	S.K.Kataria &	2008-09
	Engineering		Sons	
2	Engineering Fluid Mechanics	R.J.Garde & A.G.Miraj	Scitech Publication	
3	A textbook of Fluid & Hydraulic	Dr R.K Bansal	Laxmi Publication	9 th Edition
	Machines			

NA	ME OF THE DEPARTI	VIENT:	Electrica	l Engineering			
1	Subject Code	MTH-402		Course Title	MATHEMAT	TICS-IV	
2	Contact Hours			L 02	T 01	P	0
3	Examination Durati	on (Hrs):		Theory 0	3 Pra	actical 0	0
4	Relative Weight age	MH 2 0	M-II 2 (O ASM 1	0 ME	5 0	PRE 0 0
5	Credits:	0 3	4 th Semester	Autumn	√ Spring		

6 Objective: The main objective of the couse is to make the students understand the fundamentals of complex variables and wavelet transforms. The application of complex variables in determination of various electric quantities (for example electrostatic potential & flux) and the use of wavelet transforms in digital signal processing.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Complex Variables:	30
2.	Review of Complex numbers, Applications of De-moivre's theorem, complex functions, hyperbolic functions. Analytic functions, Cauchy Riemann equations, Complex integration, Cauchy's fundamental theorem Cauchy's integral formula, Cauchy's inequality and Liouville's theorem on integral function, Taylor's and Laurent's expansions, Zeros and poles of analytic functions, Residues and Contour integration. Conformal Mappings, Bilinear Transformation.	12
	Continuous wavelet transform, Basic properties of wavelet transform, Discrete wavelet transform, Orthonormal wavelets, Multi resolution analysis, Construction of orthonormal wavelets, Daubchies wavelets and algorithms. Band limited wavelets, Balian low theorem.	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of Publication
1	Complex Variables and Appications	R.V.Churchill	Mac- Graw HillInternational BookCompany.	8 th edition
2	Theory of functions	Oxford university press		
3	Advanced Engineering Mathematics	R.K.Jain and S.R.K. Iyenger,Narosa-2001.		
4	A first course on Wavelets	Eugenio Hernandez and Guido	Weiss,C.R.C.Press,B ocaRaton New York.	
	Ten lectures on Wavelets	I,Daubchies	SIAM Publications	

NA	ME OF THE DEPART	IMENT:	Electrica	al Engineering			
1	Subject Code	ELE-406		Course Title	Electrical N	<i>l</i> lachines (E	CE)
2	Contact Hours			L 02	T 02	Р	0
3	Examination Dura	ation (Hrs):		Theory 0	3 Pra	actical 0	0
4	Relative Weight age	: M-I 2 0	M-II 2	0 ASM 1	0 ME	5 0	PRE 0 0
5	Credits:	0 4	4 th Semester	Autumn	√ Spring]	

Objective: The objective of the course is to describe the operating principles, characteristics & applications of transformers and rotating electric machines (DC motors and generatos) 6

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Transformers:	10
	Operating principle, classification, construction, emf equation, phasor diagrams, equivalent circuit model, losses & efficiency, voltage regulation, frequency	
	response, polarity test, autotransformers, three-phase transformer connections, impedance matching, isolation & instrument transformers.	
2.		10
	D.C. Machines:	
	Operating principle, generator & motor action, construction, types of excitation, emf	
	& torque equations, power stages & efficiency. Commutation & Armature Reaction,	
	characteristics & application of d.c generators, starting & speed control of d.c	
3	Induction Machines:	10
0.	Three-phase induction motors. Principle of operation, construction, types. Rotating	10
	magnetic field, emf equation of an AC Machine, torque developed in an induction	
	motor, equivalent circuit model, torque-speed characteristics, starting & speed	
	control.	
	Single phase induction motors, starting, application	
4.	Synchronous Machines:	08
	Construction, types & operating principle of synchronous generator, AC armature	
	windings, equivalent circuit, phasor diagrams, voltage regulation, parallel	
	operation, synchronization, Power Angle characteristics, effect of field	
	excitation change.	
_	Synchronous Motor, principle, starting, hunting, damper windings.	04
5.	Special Purpose Motors:	04
	Stepper iviotor, Universal iviotor, Snaded-pole Motor.	40
	I OTAL CONTACT HOURS	42
ð.	Juggesteu Dooks.	

S.No	Name of Book	Author	Publisher	Year of Publication
1	Electric Machinery	Fitzgerald, Kingslay, Umans	Tata McGraw-Hill	6 th Edition
2	Electric Machinery Fundamentals	Chapman	McGraw-Hill Higher Education	4 th Edition
3	Electric Machines	Nagrath and Kothari	Tata McGraw-Hill	3 rd Edition
4	Electric Machinery and Transformer	Guru, Hiziroglu	Oxford University press	3 rd Edition
5	Electric Machinery	P.S.Bimbhra	Khanna Publishers	4 th Edition
6	Basic Electric Machines	Vincent Deltoro	Prentice Hall	

1	Subject Code ELE- ELE -406P	Course Title Electrical Ma	achines Laboratory
2	Contact Hours	L 0 T 0	P 1
3	Examination Duration (Hrs):	Theory 0 0 Practi	cal 0 2
4	Relative Weight age	MSLE 2 5 ESI	E 2 5
5	Credits: 0 1 4 th Sen	ester ↓ Autumn Soring	

6 Objective: The objective of the lab is to familiarize the students with different electric machines, their operation and working and to perform various tests on them.

S.No	Experiments
1	To study various parts of a dc machine and draw sketches of the same.
2	To plot the saturation curve of a dc machine.
3	To plot the external characteristic of a dc shunt generator and compare the characteristics with that
	of a separately excited generator.
4	To plot the external characteristics of a dc series generator
5	To perform open circuit and short circuit tests on a single-phase transformer
6	To perform polarity test on a single phase transformer
7	To determine the efficiency and voltage regulation of a single phase transformer
8	Study of the construction of a synchronous machine,
9	To obtain the OCC and SCC of a synchronous machine
10	To synchronize an alternator with bus bars using bright / dark lamp method.
11	To determine the equivalent-circuit parameters of a 3 - ϕ Induction motor by
	(i) No load test
	(ii) (ii) Blocked rotor test
12	To determine the Torque / speed characteristics of a 3- ϕ Induction motor
13	To study different methods of starting of single – phase induction motor.

NAM	ME OF THE DEPART	TMENT:	Electrical En	ngineering			
1	Subject Code	ELE407	Cou	urse Title	CONTROL SY	YSTEMS	(ECE)
2	Contact Hours		L	02	T 01	Ρ	0
3	Examination Dura	ation (Hrs):	Т	heory 0 3	3 Pract	tical 0	0
4	Relative Weight age	• MH 2 0	M-II 2 0	ASM 1	0 ME	5 0	PRE 0 0
5	Credits:	0 4	4 th Semester	utum	Spring		

6 Objective: The objective of the course is to introduce the students to modeling, analysis and design of control systems which are an integral part of modern society and have widespread application in science and industry.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction to continuous control systems:	04
	Definition of a control system, open-loop, closed loop (automatic and manual)	
2.	Mathematical modeling:	08
	Transfer functions, block diagrams, signal flow graphs	
3.	First and second order system:	10
	Example of first and second order systems, responses of these systems to step,	
	ramp, parabolic and sinusoidal inputs, transient, steady state and error analysis	
4.	Stability studies:	10
	Definition of stability, stability and pole locations, stability and Routh Table, stability	
	and frequency response bode plot, polar plot, Nyquists criterion, root locus.	
5.	Proportional, Integral, Derivative (P.I.D) control. Compensator design : Lead – lag	10
	compensators . Modeling of dynamic systems in state space (Introduction), solution	
	of state – variable models using digital computers, an introduction to intelligent	
	control.	
Total C	Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Control Systems Engineering	Norman S. Nise	John wiley	2009
2	Control systems(Principles and	M.Gopal	Tata McGraw-Hill	Second
	Design)		Publishing	Edition
3	Control systems	A.Anand Kumar	PHI Learning	2009
			Private limited	
4	Feedback control of dynamic systems	Franklin and Powel.	Prentice Hall	5 th Edition
5.	Design of feedback control systems	Stefani	Oxford university	
	-		press	

1	Subject Code	ELE-407P		Course Title	CONTROL SYSTEMS Lab. (ECE)
2	Contact Hours			L 0	T 0 P 1
3	Examination Duration	on (Hrs):		Theory 0 0	Practical 0 2
4	Relative Weight age			MSLE 2 5	ESLE 2 5
5	Credits:	0 1	4 th Semester	Autumn	Spring

6 Objective: The objective of the lab is make students understand the application of control systems in day to day life.

Experiments
To study the performance of Relay control Combination of P,I and D control schemes in a typical
thermal system.(oven)
To study the torque-speed characteristics of an AC servomotor.
To study the time response of a variety of simulated linear systems
To study the role of feedback in a DC speed control system
To study the role of feedback in a DC position control system.
To study the role of a combination of P,I and D control actions in a variety of simulated linear
systems.
To study the computer simulation of a number of systems.
Use of MATLAB / SIMULINK /Control System tool boxes.

1	Subject Code	ele 405	Course Title	NON-CONVENTIONAL ENERGY SOURCES (ECE)
2	Contact Hours		L 03	T 0 P 0
3	Examination Dura	ation (Hrs):	Theory 0	4 Practical 0 0
4	Relative Weight age	e MH 2 0	M-II 2 0 ASM 1	0 ME 5 0 PRE 0 0
5	Credits:	0 3	4 th Semester Autumn	↓ Spring

Electrical Engineering

6 Objective: The objective of this course is to introduce the students to the different Nonconventional and renewable energy sources, their advantages and applications in day to day life and the methods of conversion of energy from these resources into usable form.

7. Details of the Course:

NAME OF THE DEPARTMENT:

S.No	Particulars	Contact Hours
1.	Review of conventional & Non-conventional Energy resources, Energy problem,	08
	Energy & environment, Need for renewables.	
	Relevant energy conversion systems & Technologies, Electricity generation, Rural	
2.	Wind & Solar Energy. Principles of power Gen. From wind, site selection, wind	11
	speed & power duration curves, wind power system components, Wind-Diesel	
	Hybrid systems & recent developments. Solar radiation, solar collectors – flat plate & concentrating, collectors, Solar water, beaters & solar thermal power plants	
	Miscellaneous Applications	
3.	Electric Power Generation from Tidal, OTEC & Geothermal energy. Simple power	06
	plant based on Tidal / OTEC / Geothermal	00
4.	Direct Energy Conversion techniques, why Direct Energy Conversion, Solar cell, principle and operation. Solar module & array solar photovoltaic power system /	08
	solar wind Diesel system – operation & design. MHD & Thermo-Electric power	
	generation.	
5.	Energy conservation. Energy conservation in Transport sector, rural energy, urban	05
	energy, Industrial energy, power generation & distribution, Energy efficient buildings.	
~	Energy audit. Typical case studies.	
6.	Future Energy Sources. Nuclear Fusion Energy – Tokamak reactor, Hydrogen	04
	Energy An introduction to power generation, advantages and ilmitations. Exploring	
	new energy sources. Economic evaluation or energy systems.	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of Publication
1	Non-Conventional Energy Resources	R.K Singal	Dhanpat Rai publication	
2	,– Energy Technology	S. Rao, B.B Parlekar	Khanna Publications	3 rd edition
3	Wind & Solar Power System	M.Patel	CRC Press	
4	Principle of Energy Conversion		Culp-Mc Graw Hill Publication	

NA	ME OF THE DEPARTMEN	T: Electric	al Engineering	
1	Subject Code ELE	407	Course Title	CONTROL SYSTEMS (Information & Technology)
2	Contact Hours		L 02	T 01 P 0
3	Examination Duration (H	-Irs):	Theory 0 3	Practical 0 0
4	Relative Weight age	VH 2 0 MH 2	0 ASM 1 0	ME 5 0 PRE 0 0
5	Credits: 0	4 4 th Semester	Autum	Spring

6 Objective: The objective of the course is to introduce the students to modeling, analysis and design of control systems which are an integral part of modern society and have widespread application in science and industry.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction to continuous control systems:	04
	Definition of a control system, open-loop, closed loop (automatic and manual)	
	control.	
2.	Mathematical modeling:	08
3.	Transfer functions, block diagrams, signal flow graphs First and second order system:	10
4.	Example of first and second order systems, responses of these systems to step, ramp, parabolic and sinusoidal inputs, transient, steady state and error analysis Stability studies:	10
5.	Definition of stability, stability and pole locations, stability and Routh Table, stability and frequency response bode plot, polar plot, Nyquists criterion, root locus. Proportional, Integral, Derivative (P.I.D) control. Compensator design : Lead – lag compensators . Modeling of dynamic systems in state space (Introduction), solution of state – variable models using digital computers, an introduction to intelligent control.	10
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Control Systems Engineering	Norman S. Nise	John wiley	2009
2	Control systems(Principles and	M.Gopal	Tata McGraw-Hill	Second
	Design)		Publishing	Edition
3	Control systems	A.Anand Kumar	PHI Learning	2009
			Private limited	
4	Feedback control of dynamic systems	Franklin and Powel.	Prentice Hall	5 th Edition
5.	Design of feedback control systems	Stefani	Oxford university	
			press	

I	NAME OF THE DEPARTMENT:	Electrical Engineering
1	Subject Code ELE-407P	Course Title CONTROL SYSTEMS LABORATORY (IT)
2	Contact Hours	L 0 T 0 P 1
3	Examination Duration (Hrs):	Theory 0 0 Practical 0 2
4	Relative Weight age	MSLE 2 5 ESLE 2 5
5	Credits: 0 1	4 th Semester Autumn Spring

6 Objective: The objective of the lab is make students understand the application of control systems in day to day life.

S.No	Experiments
1	To study the performance of Relay control Combination of P,I and D control schemes in a typical
	thermal system.(oven)
2	To study the torque-speed characteristics of an AC servomotor.
3	To study the time response of a variety of simulated linear systems
4	To study the role of feedback in a DC speed control system
5	To study the role of feedback in a DC position control system.
6	To study the role of a combination of P,I and D control actions in a variety of simulated linear
	systems.
7	To study the computer simulation of a number of systems.
8	Use of MATLAB / SIMULINK /Control System tool boxes.

NA	ME OF THE DEPAF	RTMENT:	Electrical E	Engineering			
1	Subject Code	ELE 405	Course Title	NON-CONVE (Infor	NTIONAL E mation & Te	NERGY SO echnology	DURCES)
2	Contact Hours			L 03	T 0]	0
3	Examination Dur	ation (Hrs):		Theory 0 4	Pra	ctical 0	0
4	Relative Weight ag	e MH 2 0	M-II 2 0	ASM 1 0) ME	5 0	PRE 0 0
5	Credits:	0 3	4 th Semester	Autum	√ Spring		

6 Objective: The objective of this course is to introduce the students to the different Nonconventional and renewable energy sources, their advantages and applications in day to day life and the methods of conversion of energy from these resources into usable form.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Review of conventional & Non-conventional Energy resources, Energy problem, Energy & environment, Need for renewables.	08
	Relevant energy conversion systems & Technologies, Electricity generation, Rural Energy.	
2.	Wind & Solar Energy, Principles of power Gen. From wind, site selection, wind speed & power duration curves, wind power system components, Wind-Diesel Hybrid systems & recent developments. Solar radiation, solar collectors – flat plate & concentrating collectors, Solar water heaters & solar thermal power plants. Miscellaneous Applications	11
3.	Electric Power Generation from Tidal, OTEC & Geothermal energy. Simple power plant based on Tidal / OTEC / Geothermal	06
4.	Direct Energy Conversion techniques, Why Direct Energy Conversion, Solar cell, principle and operation. Solar module & array, solar photovoltaic power system / solar wind Diesel system – operation & design. MHD & Thermo-Electric power generation.	08
5.	Energy conservation. Energy conservation in Transport sector, rural energy, urban energy, Industrial energy, power generation & distribution, Energy efficient buildings. Energy audit. Typical case studies.	05
6.	Future Energy Sources. Nuclear Fusion Energy – Tokamak reactor, Hydrogen Energy An introduction to power generation, advantages and limitations. Exploring new energy sources. Economic evaluation of energy systems.	04
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Non-Conventional Energy Resources	R.K Singal	Dhanpat Rai	
			publication	
2	,— Energy Technology	S. Rao, B.B Parlekar	Khanna	3 rd edition
			Publications	
3	Wind & Solar Power System	M.Patel	CRC Press	
4	Principle of Energy Conversion		Culp-Mc Graw Hill	
			Publication	

NA	ME OF THE DEPAR	TMENT:	Electrical Engine	eering	
1	Subject Code	ELE- ELE -406	Course Title	ELECTRICAL ENGG. TECHNOLOGY (Mechanical Engineering)	
2	Contact Hours		L	02 T 01 P 0	
3	Examination Dur	ation (Hrs):	Theor	ry 0 3 Practical 0 0	
4	Relative Weight age	e MH 2 0	M-II 2 0 A	ASM 1 0 ME 5 0 PRE 0 0)
5	Credits:	0 4	4 th Semester Autum	m Spring	

6 Objective: the objective of the course is to introduce the basic concepts of electrical engineering to students, some basics of electric machines and some basic concepts of electric measurements techniques.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Network Analysis and theorems: Basic Circuit theory (D.C and A.C.), Resistance's, Inductance and capacitance, Ohm's law, KCL, KVL, Power and energy relations, super-position theorem, Thevenin's theorem, Norton's theorem, Maximum power-transfer theorem.	07
2.	Sinusolidally –excited circuits: Basic definitions of a .c. circuits, phasor algebra and complex number representations, solutions of sinusolidally-excited R, L, C circuits. Introduction to 3-phase circuits.	04
3.	Transformers: Construction, Principle of operation, Emf equation, Phasor diagrams, No Load and on load, Equivalent circuit model, Voltage-regulation and tests, Introduction to 3-phase transformers. Applications.	05
4.	D.C. Generators and motors: Basic construction, Principles of operation, Types of d.c. generators and motors, Applications	05
5.	Transducers: Definitions, Types of transducers and their applications for mechanical measurements.	03
6.	Ammeters and voltmeters: Meter-range extension and their connections in the circuits.	04
7	Bridge methods to measure: Resistance, inductance and Capacitance: Various types of bridges and their applications for measuring, R, L and C.	06
8	Measurement of power and energy: Wattmeters, measurement of power using Wattmeters, Energy meters and measurement of electrical using energy meters.	06
9	Digital Instruments: Introduction to digital meters for the measurement of various electrical quantities	02
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Principles of Electrical Engineering	Vincent Del Toro.	Prentice Hall	
2	Electric Machines	Nagrath and Kothari	Tata McGraw-Hill	3 rd Edition
1				
3	Electric ivachinery	Fitzgeraid, Kingsley,	Tata McGraw-Hill	6 ⁱⁿ Edition
		Umans		
4	Electrical Measurements and	Golding, Widdis	Pitman	5 th Edition
	Measuring Instruments	_		
5	Electrical Electronic Measurements	A.K.Sawhney.	Dhanpat Rai	2006

1	Subject Code E	ELE 406P	Course T	itle ELEC	TRICAL ENGO (Mechanic	6. TECHI al Engin	NOLOGY LAB eering)
2	Contact Hours			L 0	T 0		P 1
3	Examination Duratic	ın (Hrs):		Theory 0	0 Pr	actical	0 2
4	Relative Weight age		[MSLE 2	5	ESLE	2 5
5	Credits:	0 1	4 th Semester	Autum	√ Spring	_	

6 **Objective:**

The objective of the lab is study the various basic electrical components and their behaviour and response in electric circuitry.

S.No	Experiments
1	To study the overall safety procedures to be employed while working with electric circuits.
2	To study the series and parallel operation of resistors, inductors and capacitors.
3	To verify
	 (a) KVL and KCL in DC circuits. (b) Superposition theorem. (c) They enjoys Theorem.
4	To measure electric power in a single phase AC circuit with resistive load, R-L load and RLC load.
5	To study the overall construction of electric machines
6	Measurement of Electrical Energy by
	(i) KWH Meter
	(ii) Watt meter
7	Measurement of power factor by
	(i) Power Factor meter
	(ii) Voltmeter, ammeter and watt meter method.

NA	ME OF THE DEPARTMENT:	Electrical Engineering
1	Subject Code ELE-407	Course Title CONTROL SYSTEMS (CSE)
2	Contact Hours	L 02 T 01 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weight age M-I 2	0 MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4	4 th Semester Autumn Spring

6 **Objective:**

: The objective of the course is to introduce the students to modeling, analysis and design of control systems which are an integral part of modern society and have widespread application in science and industry.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction to continuous control systems:	04
	Definition of a control system, open-loop, closed loop (automatic and manual)	
	control.	
2.	Mathematical modeling:	08
3.	Transfer functions, block diagrams, signal flow graphs First and second order system:	10
4.	Example of first and second order systems, responses of these systems to step, ramp, parabolic and sinusoidal inputs, transient, steady state and error analysis Stability studies:	10
5.	Definition of stability, stability and pole locations, stability and Routh Table, stability and frequency response bode plot, polar plot, Nyquists criterion, root locus. Proportional, Integral, Derivative (P.I.D) control. Compensator design : Lead – lag	10
	compensators . Modeling of dynamic systems in state space (Introduction), solution of state – variable models using digital computers, an introduction to intelligent control.	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Control Systems Engineering	Norman S. Nise	John wiley	2009
2	Control systems(Principles and	M.Gopal	Tata McGraw-Hill	Second
	Design)		Publishing	Edition
3	Control systems	A.Anand Kumar	PHI Learning	2009
			Private limited	
4	Feedback control of dynamic systems	Franklin and Powel.	Prentice Hall	5 th Edition
5.	Design of feedback control systems	Stefani	Oxford university	
			press	

	NAME OF THE DEPARTMENT:	Electrical Engineering	
1	Subject Code ELE-407P	Course Title CONTROL SY	STEMS LAB.
2	Contact Hours	L 0 T 0	P 1
3	Examination Duration (Hrs):	Theory 0 0 Practica	02
4	Relative Weight age	MSLE 2 5 ESLE	2 5
5	Credits: 0 1	4 th Semester Autumn Spring	

6 Objective: The objective of the lab is make students understand the application of control systems in day to day life.

S.No	Experiments
1	To study the performance of Relay control Combination of P,I and D control schemes in a typical
	thermal system (oven)
2	To study the torque-speed characteristics of an AC servomotor.
3	To study the time response of a variety of simulated linear systems
4	To study the role of feedback in a DC speed control system
5	To study the role of feedback in a DC position control system.
6	To study the role of a combination of P,I and D control actions in a variety of simulated linear
	systems.
7	To study the computer simulation of a number of systems.
8	Use of MATLAB / SIMULINK /Control System tool boxes.

NA	ME OF THE DEPAR	TMENT:	Electrical E	ingineering		
1	Subject Code	ELE 405	Course Title	NON-CONV	ENTIONAL E (CSE)	NERGY SOURCES
2	Contact Hours			L 03	T 0	P 0
3	Examination Dur	ation (Hrs):		Theory 0 4	Pract	ical 0 0
4	Relative Weight ag	e MH 2 0	M-II 2 0	ASM 1	0 ME	5 0 PRE 0 0
5	Credits:	0 3	4 th Semester	Autumn	√ Spring	

6 Objective: The objective of this course is to introduce the students to the different Nonconventional and renewable energy sources, their advantages and applications in day to day life and the methods of conversion of energy from these resources into usable form.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Review of conventional & Non-conventional Energy resources, Energy problem,	08
2.	Relevant energy conversion systems & Technologies, Electricity generation, Rural Energy. Wind & Solar Energy, Principles of power Gen. From wind, site selection, wind speed & power duration curves, wind power system components, Wind-Diesel Hybrid systems & recent developments. Solar radiation, solar collectors – flat plate & concentrating collectors, Solar water heaters & solar thermal power plants. Miscellaneous Apolications	11
3.	Electric Power Generation from Tidal, OTEC & Geothermal energy. Simple power plant based on Tidal / OTEC / Geothermal	06
4.	Direct Energy Conversion techniques, Why Direct Energy Conversion, Solar cell, principle and operation. Solar module & array, solar photovoltaic power system / solar wind Diesel system – operation & design. MHD & Thermo-Electric power generation.	08
5.	Energy conservation. Energy conservation in Transport sector, rural energy, urban energy, Industrial energy, power generation & distribution, Energy efficient buildings. Energy audit. Typical case studies.	05
6.	Future Energy Sources. Nuclear Fusion Energy – Tokamak reactor, Hydrogen Energy An introduction to power generation, advantages and limitations. Exploring new energy sources. Economic evaluation of energy systems.	04
	42	

S.No	Name of Book	Author	Publisher	Year of Publication
1	Non-Conventional Energy Resources	R.K Singal	Dhanpat Rai publication	
2	,— Energy Technology	S. Rao, B.B Parlekar	Khanna Publications	3 rd edition
3	Wind & Solar Power System	M.Patel	CRC Press	
4	Principle of Energy Conversion		Culp-Mc Graw Hill Publication	