NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ELE-501	Course Title POWER SYSTEMS-I
2	Contact Hours	L 3 T 1 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage M-I 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4 5 th	Semester Autumn Spring

6

Objective: The main objective of the course is to understand the structure of Electric power system and its different components.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction to Power Systems generation, transmission & distribution. Element of AC distribution. Single fed, double fed and ring main distributor.	06
2. 3.	overhead line insulator types; pin, suspension, strain, schackle, guy etc. String efficiency & methods of equalizing potential drop over string of suspension insulators.	08
З.	Transmission line parameters and their evaluations, types of overhead conductors with calculations of inductance and capacitance. Models of short, medium and long transmission lines. Skin, proximity and Ferranti effect. Power transfer capability of a transmission line. Mechanical Design of transmission line. Electric Power Transmission Towers.	16
4. 5.	Classification of cables, Cable conductors, insulating materials, insulation resistance, electrostatic stress, grading of cables, capacitance calculation, losses and current carrying capacity. Location of faults. Location of faults, methods of laying of underground cables.	08
0.	Corona, Visual & critical voltages, corona loss, effect of corona on line design practical considerations	04
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of Publication
1	Power System Analysis	J.J. Grainger and W.D Stevenson	Mcgraw hill	1994
2	Electric Power Systems	B.W. Weedy and B.J. Cory	John Wiley and sons	1998
3	Electric Power Systems	C.L. Wadhwa	New age international	2010
4	Power System Engineering	Nagrath and Kothari	Tata Mograw hill	2007
5.	Transmission and Distribution of Electrical Energy	H.Cotton	Hodder Arnold	3 rd Revised edition, 1970

NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ELE-502	Course Title ELECTRICAL MACHNINES - II
2	Contact Hours	L 3 T 1 P 2
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage MI 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 5	5 th Semester Autumn Spring

6 **Objective:**

The objective of the course is to study the various types of conventional and advanced motors, generators and transformers. It helps to build a strong foundation in an electrical power system.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Basic Concepts in A.C. Rotating Electrical Machines	
2.	The rotating magnetic field, Magneto-motive force and flux distribution, Induced voltage, Production of torque, Leakage fluxes, losses and efficiency Induction Machines a. Three Phase Induction Motors	2
	 Principle of operation of an induction motor, Construction, Types, Equival circuit, Torque/speed characteristics, Induction motor tests, Starting, Sp control, Induction generator, Schrage Motor, Circle Diagram, Applications a selection b. Single-Phase Induction Motors Types of 1-phase induction motors, analysis and testing of 1-phase induction motors, universal motor 	
3.	 Synchronous Machines Constructional features, Types and working principle, windings, Equivalent circuit voltage regulation and its determination, saturation effect, parallel operation, Two axis theory, Salient type machines, steady-state power-angle characteristics, Excitation systems, V-curves, synchronous capacitors, Hunting, synchronous Machine Transients, Analysis of sudden 3-phase short circuit, Transient power-angle characteristics. 	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Electric Machinery by Fitzgerald	Kingslay, Umans	Tata Mcgraw hill	2002
2	Electric Machines	Nagrath and Kothari	Tata Mcgraw hill	2010
3	Electric Machines	Guru	Oxford university	3 rd edition
			press	2000
	Electrical Machines and Transformers	Geroge Mc Pherson	John Wiley	
4				1990
	Electric Machinery Fundamentals	Chapman	Tata Mcgraw hill	2010
5.				
6.	Electric machinery and Transformers	Irving Kosow	Pearson	2007
7.	Alternating current machinery	Langsdorf	Tata Mograw hill	2009

NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ELE-502P	Course Title ELECTRICAL MACHINES LABORATORY –II
2	Contact Hours	L 0 T 0 P 2
3	Examination Duration (Hrs):	Theory 0 0 Practical 0 2
4	Relative Weightage	MSLE 2 5 ESLE 2 5
5	Credits: 0 1	3 rd Semester Autumn Spring

6 **Objective:**

The objective of the lab is to familiarize the students with the different electric machines, their operation and working.

S.No	Experiments
1	To study the different parts of an Induction motor. To determine the
	equivalent–circuit parameters of a 3 - ϕ Induction motor by (i) No load test (ii)
	Blocked rotor test
2	To determine the Torque / speed characteristics of a 3- ϕ Induction motor
3	To determine the speed characteristics of a schrage motor
4	To study the speed control of an Induction motor by pole-changing method
5	To determine the speed / Torque characteristics of an AC series motor
	(Universal motor)
6	To determine the equivalent circuit parameters of a 1- ϕ Induction motor by (i)
	No load test (ii) Blocked rotor test
8	Study of the construction of a synchronous machine
9	To obtain the OCC and SCC of a synchronous machine by Synchronous
	impedance method
10	To synchronize an alternator with bus bars using bright / dark lump method
11	. To find voltage regulation of an alternator by actual loading
12	To obtain the V-curves and inverted V-curves of a synchronous motor
13	To conduct slip-test on a salient-pole synchronous machine and hence
	determine its direct and quadrature – axis reactances

NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ELE-503	Course Title CONTROL SYSTEM-II
2	Contact Hours	L 2 T 1 P 2
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage M-I 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4	5 th Semester ↓ Autumn Spring

6 **Objective:**

This course deals with the modern control theory, non linear control and advanced control techniques. The course is organized in such a fashion that the students will develop lot of interest in research activity.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	State variable modeling.	
	Block diagram, transfer function and signal flow graphs in state space	08
2.	State variable analysis and design solution of state vector equations, design using state – variable feed back. Controllability and observability.	
	State – Variable reed back. Controllability and observability.	14
3.	Digital control system:	
	Hardware elements of a digital control system, Z- transform, inverse Z-transform, difference equations, pulse transfer function. Discrete time system analysis Non linear control systems.	10
4.	Linearization of Non-linear control system about and nominal operating point,	04
	analysis and design using linearized models	
5.	Advanced control techniques:	
	a) Fuzzy logic control	08
	b) Adaptive control	
	Neural Network based control	
	Total Contact Hours	44

S.No	Name of Book	Author	Publisher	Year of Publication
1	State variable methods and digital control	M. Gopal	Tata Mcgraw Hill	2 nd edition
2	Control system engineering	Norman .s. Nise	John Wiley	2009
3	Control systems	A. Anand Kumar	PHI Learning Pvt. Ltd	2009
4	Feedback control of dynamic systems	Franklin and powel	Prentice hall	5 th edition

NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code	ELE-503P		Course Title	CONTROL SYS	STEMS & VILAB.
2	Contact Hours			L 0	T 0	P 2
3	Examination Duration	on (Hrs):		Theory 0 0	Practical	0 2
4	Relative Weightage			MSLE 2 5	ESLE	2 5
5	Credits:	0 1 3 ^{rc}	Semester	Autumn	Spring	

6 **Objective:**

The objective of the lab is to make the students understand the applications of control system in day to day life.

S.No	Experiments	
1	To study the performance of Relay control Combination of P, I and D control schemes in a typic	
	thermal system (Oven).	
2	To study the torque-speed characteristics of an AC servomotor	
3	To study the time response of a variety of simulated linear systems	
4	To study the role of feedback in a DC speed control system	
5	To study the role of feedback in a DC position control system	
6	Use of MATLAB / SIMULINK /Control System tool boxes	
7	To study the role of a combination of P,I and D control actions in a variety of simulated linear systems	
8	To study the computer simulation of a number of systems	
9	System identification using frequency domain techniques	
10	Lead/ lag compensator design	
11	Microprocessor based PID control	
12	Computer control of systems	
13	Control of stepper motor	
14	Control system (State Space)	
'15	Fuzzy logic and neural network tool boxes	

NAME OF THE DEPARTMENT:

Electrical Engineering

1	Subject Code ELE-504	Course Title Computer Aided Simulation of Electrical Systems
2	Contact Hours	L 0 T 0 P 3
3	Examination Duration (Hrs):	Theory 0 0 Practical 0 2
4	Relative Weightage	MSLE 2 5 ESLE 2 5
5	Credits: 0 2	3 rd Semester Autumn Spring

6 **Objective:**

The objective of the course is to make students analyze different control systems using MATLAB and SIMULINK tool boxes.

S.No	Experiments		
1	Use of MATLAB in:		
	1. Analysis of D.C Circuits		
	2. Transient and steady state analysis of a.c/d.c circuits.		
	3. Analysis of control systems		
	Analysis of Electric Machines and Transformers		
2	Use of MATLAB and SIMULINK Tool boxes		
3	Use of Control System (State Space), Fuzzy Logic & Neural Network Tool Boxes		

NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ECE-508	Course Title COMMUNICATION SYSTEMS
2	Contact Hours	L 2 T 1 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage M-I 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 3	5 th Semester Autumn Spring

6 **Objective:**

The objective of the course is to make students understand the fundamentals of point to point communication link. It also provides design issues in a digital communication and different communication techniques.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Spectral analysis of Signals:	
2.	Fourier series of repetative signals, Fourier transform of non- repetative signals, amplitude spectrum of special signals viz. Pulse train and pulse waveform <u>Modulation:</u>	08
	AM, DSB/SC, SSB, VSB, Angle modulation, NBFM, WBFM, Diode detector, Frequency discriminator, AM & FM, Transmitter	10
3.	Demodulation:	
	AM and FM signals, Radio Receivers – AM & FM, (Block diagram) <u>Noise Analysis:</u>	06
4.	Performance of AM & FM Systems, in presence of noise Threshold in AM & FM	06
	Demodulations, Pre- emphasis, and De-emphasis, in FM Systems	
5.	Digital Communication:	
	Sampling, Quantization, Quantization noise, Coding, Pulse code Modulation;	08
	Differential PCM, ADPCM, Relative advantages and dis-advantages. Delta	
	modulation. PWM & PPM	
6.	Digital Modulation Techniques:	
	ESK, FSK, PSK, M-FSK, DPSK, GPSK schemes	04
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Electronics communication System	G. Kennedy	Mcgraw hill	2005
			education (India)	
			Ltd	
2	Principles of Communication system	Taub and Shelling	Tata Mcgraw hill	2007
			education Pvt Ltd	
	Communication system	S. Haykins	Willey India Pvt Ltd	
3	-	-	-	2007

NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code ECE-509	Course Title DIGITAL ELECTRONICS AND LOGIC DESIGN
2	Contact Hours	L 3 T 1 P 2
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage M-I 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 5	5 th Semester Autumn Spring

6 **Objective:**

The objective of the course is to make students familiar with Digital controls and different components used in digital electronics. It provides the review of basic principles, without any prior knowledge of the topic.

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Review of Binary, octal and hexadecimal number systems. Various types of codes	06
2.	Boolean algebra and Boolean theorems.	04
3.	Logic gates and implementation of Boolean functions with various types of logic gates. Circuit equivalence Simplification techniques and minimization by map methods. Tabular method	06
4. 5.	Combination logic and arithmetic circuits. Encoders and Decoders, multiplexes &	06
5.	de-multiplexes	04
6.	Sequential circuits –state diagrams and state tables, design and analysis of flip- flops, registers, counters. Synchronous and asynchronous operation of sequential circuits. Analog to digital convertor, digital to analog convertor	08
7.	Latches and memory organisation. ROMs, EPROMs and RAMs –Dynamic and static	04
8.	Introduction to PLA's	02
9.	IEEE notations	02
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of
				Publication
1	Digital logic	M. Moris Mano	Pearson	1979
2	Digital principles and applications	A.P. Malvino	Tata Mcgraw hill	2006
3	Switching circuits	Marcus	Prentice hall	1976-02

NAME OF THE DEPARTMENT:

Electrical Engineering

1	Subject Code	ECE-510P		Course Title	DIGITAL LOGIC D		IRONICS AB	and
2	Contact Hours			L 0	Т 0		P 2	
3	Examination Duration	on (Hrs):		Theory 0 0	Pr	actical	0 2	
4	Relative Weightage			MSLE 2 5		ESLE	2 5	
5	Credits:	0 1	3 rd Semester	Autumn	Spring			

6 **Objective:**

The objective of the lab is to make students familiar with the different digital devices used in digital electronics.

S.No	Experiments			
1	To verify the truth table of following logic gates:			
	AND, OR and NOT.			
	NAND, NOR, XOR and XNOR			
2	To realize the above gates using discrete active and passive components			
3	To implement XOR and XNOR using universal logic gates			
4	To verify DE Morgans law using logic gates			
5	To implement certain Boolean expressions and check their equality			
6	To design and realize			
	a) Half adder and verify its truth table.			
	b) Full adder and verify its truth table.			
	c) Half subtractor and verify its truth table.			
	d) Full subtractor and verify its truth table			
7	To design a multiplexer/ demultiplexer using two input NAND gates			
8	To design a 4-bit binary to decimal convertor			
9	To design a modulo 10 counter			
10	Given the frequency f obtain the waveforms with frequencies f/2, f/5 & f/10			
11	Design and realize the following flip-flops using logic gates.			
	a) RS flip flop b) JK flip flop. c) D flip flop d) T flip flop.			
12	Use PLL as			
	a) Frequency multiplier.			
	b) Frequency demodulator			
13	MINI PROJECT: Design and fabricate a frequency counter clock			

NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR NAME OF THE DEPARTMENT: Electrical Engineering

1	Subject Code MTTH-503	Course Title MATHEMATICS-V
2	Contact Hours	L 2 T 1 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical 0 0
4	Relative Weightage M-I 2 0	M-II 2 0 Asm 1 0 ME 5 0 PRE 0 0
5	Credits: 0 3	5 th Semester ↓ Autumn Spring

6 Objective: The main theme of the course is to use Numerical Techniques in Electrical engineering problems.

7. Details of the Course:

S.No	Particulars	Contact Hours	
1.	Finite Difference:		
	Difference Table and its usage. The difference operators , and the operator E	04	
2.	Interpolation:		
	Interpolation with equal intervals, Newton's advancing difference formula. Newtons's backward difference formula. Interpolation with unequal intervals. Newton's divided difference formula.	06	
	Lagrange's interpolation formula	00	
3.	2. Central Differences:		
	The central difference operator and the overraging operator μ . Relations between the		
	operators. Gauss forward and backward interpolation formula, Sterlings, Bessel's, Laplace and	04	
	Everetts formulae		
4.	Numerical solution of algebraic and Transcendental Equations: Graphic Method, Regula-Fast method, Balzano's Process of bisection of intervals, Newton-		
4.			
	Raphson Method and its geometrical significance	06	
5.	Numerical Integration:		
	Numerical Integration, General Quadrature Formula, Simpson's one-third and three-eight rules,		
	Weddles' rule, Hardy's rule, Trapezoidal rule.	06	
6.	Numerical Solution of ordinary differential equations:		
	Numerical solution of ordinary differential equations, Picard's method. Taylors series method,		
	Euler's method, Runge-Kutta Method	06	
7.	Statistics and Probability:		
	Random experiment, sample space, events, Mutually exclusive events, Classical and Axiomatic	10	
	approach (definition) of probability, Dependent and independent events. Addition and multiplication		
	theorems on probability, Baye's theorem on conditional probability.		
	Covariance, Correlation, coefficient of correlation,, lines of Regression, Method of least squares, fitting a straight line and parabola of second degree.		
	Random variable, Moments and moment generating function of discrete and continuous random		
	variables Additive and Multiplicative law of mathematical expectation		
Total Contact Hours			

Books Suggested:

S.No	Name of Book	Author	Publisher	Year of Publication
1	Numerical Methods for Scientists and Engineering	M.K.Jain, S.R.Iyengar & R.K. Jain, Wiley Eastern Ltd	New age publishers	2005
2	Mathematical Numerical Analysis	S.C. Scarborough	CBS Publishers and distributors	
3	Introductry methods in Numerical Analysis	S.S.Sastry	PHI learning Pvt Ltd	2009
5	Numerical Methods for Mathematics, Sciences and Engg	J. H. Mathews	Prentice hall college division	2 nd sub edition Jan 1992
6	Fundamentals of Mathematical Statistics	S.C.Gupta and V.K.Kapoor	S. chand	2011
7	Statistical Theory and Methodology in Science and Engineering	Brownlee	Krieger publishers co	2 nd edition 1984
8	Introduction to Mathematical Statistics	R.E. Walpole 3 rd edition	Prentice hall	3 rd sub edition 1982