Electrical Engineering

1	Subject Code ELE-601	Course Title POWER SYSTEM-11
2	Contact Hours: 42	L 3 T 1 P
3	Examination Duration (Hrs):	Theory 0 3 Practical
4	Relative Weight age M-I 2 0	MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 5	Semester Autumn Spring

6 Objective:

Details of the Course: 7.

NAME OF THE DEPARTMENT:

S.No	Particulars	Contact Hours
	Per Unit Representation of Power Systems:	
1.	Single line diagram, impedance and reactance diagram of a system, per unit	6
	calculations, per unit representation of a power system.	
2.	Fault Analysis (Balanced Faults:	6
	Faults, types of faults, symmetrical 3-phase balanced faults – calculation of fault	
	currents, current limiting reactors.	
3.	Fault Analysis (Un-symmetrical Faults)	8
	Symmetrical components, sequence impedances, sequence networks, unsymmetrical	
	faults -single line to ground, line-to-line, double line to ground faults on unloaded	
	alternators and on power systems,	
4.	Insulation Co-ordination:	8
	Generation of over-voltages in a power system, lightning phenomena, lightning	
	surges, switching surges-interruption of short circuits and switching operations,	
	switching surges - interruption of capacitive circuits, resonance over voltages,	
	protection of power system components against over voltages - ground wires,	
	lightning arrestors. Concept of insulation coordination, Basic impulse insulation level,	
	standard impulse test wave, volt-time curve, location and rating of lightning arrestors.	
5.	Surge Performance of Transmission Lines:	6
J.	Traveling waves on transmission lines, open-end line, short-circuited line, line	Ü
	terminated through a resistance, line connected to a cable, reflection and refraction at	
	a T-junction, line terminated through a capacitance, line terminated through an	
	inductance, Attenuation of traveling waves.	
6.	Interference of Power Lines with communication Circuit Electrostatic and	2
	Electromagnetic effects	
	High Voltage Direct Current Transmission & FACTS Technology	
7.	Comparison of HVAC and HVDC transmission lines. Thyristors (brief revision). Basic	6
	converter and D.C system operation - rectification, inversion. Complete direction	
	current link. Objective of FACTS. Basic types of FACTS controllers. Introduction to	
	FACTS Devices.	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Date of publishing
1	Power System Analysis	J.J. Grainger and W.D Stevenson	Tata McGraw Hill	1994
2	Electrical Power Systems.	C.L. Wadhwa	New age Publication	2005
3	Power Systems Engineering	Nagrath and Kothari	Tata McGraw hill	2007

	NAME OF THE DEF	PARTMENT:		Electrical Eng	gineeri	ing		
1	Subject Code	ELE-601P		Course T	itle	POWER SY	STEM- II	LAB
2	Contact Hours 02	;		L 0	Т	0	P 2	
3	Examination Dur	ation (Hrs):		Theory 0	0	Practical	0 2	
4	Relative Weight age	2		MSLE 2	5	ESLE	2 5	
5	Credits: 0	1	Semester	Autumn	Spi	ring		
6	Objective:							

7. Lab. Experiments:

S.No	Experiments
1	Per unit representation of a power system.
2	Measurement of positive, negative and zero sequence impedance and currents.
3	Measurement of earth resistance.
4	Measurement of insulation resistance of insulators
5	Transmission line fault analysis
6	Application of software packages in power systems.

NAME OF THE DEPARTMENT: **Electrical Engineering** Subject Code ELE-602 POWER ELECTRONICS 1 Course Title 2 Contact Hours: 42 2 1 Examination Duration (Hrs): Theory 0 3 3 Practical 4 Relative Weight age MH 2 0 MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0 Credits: 5 4 Semester Autumn Spring

6 **Objective:**

7. Details of the Course:

S.No	Particulars	Contact Hours
1.	Introduction of Power Electronics, Power Semi-conductor Devices: Power Diodes, power Transistors, power MOSFETs, IGBTs, GTOs, Thyristors, Basic theory of operation, characteristics, Ratings, Protection and cooling, Recent Advances in Power Semi-conductor Devices.	8
2.	<u>Driving and control circuits:</u> series and parallel operation of devices, commutation of power switching devices.	4
3.	Power Electronic converters: 1-phase / 3 phase phase-controlled converters (Semi-converters, full – converters and Dual converters). Analysis and performance with passive load, Harmonics and power factor, PVM Rectifiers.	8
4.	<u>D.C-to-D.C converters (choppers)</u> :Buck, Boost and Buck-Boost type and various chopper configurations.	5
5.	AC voltage controllers.	2
6.	<u>D.C -to-A.C converters (Inverters):</u> 1-phase / 3-phase, VSI, PWM VSI, CSI, Frequency and voltage control, Line-commutated inverters (LCIs).	6
7.	Cyclo-converters (1-phase and 3-phase)	3
8	Power quality issues and present status of improved power quality converters (IPQCs).	4
9.	Some typical applications of power Electronics	2
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Date of publishing
1.	Power Electronics: Circuits, Devices and Applications	M. H. Rashid	Pearson education india	2003
2.	Power Electronics	C.W Lander.	McGraw-Hill	1994
3.	Power semi-conductor controlled Drives	G.K.Dubey	Prentice Hall	1989
4.	Thyristorized Power controllers	G.K. Dubey, Doradla, Joshi and Sinha	New age international publishers	1986
5.	Power Electronics and Variable Frequency Drives	B.K Bose	IEEE press	1997
6.	Modern power Electronics	B.K Bose	IEEE press	1992
7.	Power Electronic control of AC Motor	Murphy and Turnbull	Pergamon press	1988

N	AME OF THE DEI	PARTMENT:		Electrical Engin	neerin	g	
1	Subject Code	ELE-602P		Course Tit	tle I	POWER EL	ECTRONICS LAB
2	Contact Hours			L 0	Т	0	P 2
3	Examination Dur	ration (Hrs):		Theory 0 0]	Practical	0 2
4	Relative Weight	age		MSLE 2 5]	ESLE	2 5
5	Credits:) 1 3	3 rd Semester	Autumn	Spri	ng	
6	Objective:						

Lab. Experiments:

S.No	Experiments
1	To obtain the V-I static characteristics of an SCR, triac and diac,.
2	To study various triggering circuits
3	To obtain the UJT characteristics
4	To study the operation of a Line Synchronised UJT Relaxation Oscillator.
5	To study the illumination control using SCR.
6	To study the light operated SCR Alarm circuit.
7	To study half wave gate controlled rectifier using one SCR.
8	To study single phase half controlled, full wave rectifier.
9	To study various techniques of forced commutation of an SCR.
10	To study the DC circuit breaker action of an SCR.
11	To study the speed control of a DC shunt motor using single phase bridge converter.
'12	To study the speed control of a single phase induction motor using single phase voltage controller.

Electrical Engineering

1 Subject Code ELE-603 Course Title Computer Aided Design of Electric Machines

2 Contact Hours: 42 L 3 T 1 P

3 Examination Duration (Hrs): Theory 0 3 Practical

5 **Credits:**0 5 **Semester**Autumn Spring

6 **Objective:**

7. Details of the Course:

NAME OF THE DEPARTMENT:

S.No	Particulars	Contact Hours
1.	Principles of Electrical Machine Design:	
	Considerations in design, design factors, limitations in design, modern trends in	6
	design.	
_	Magnetic Circuit Calculations	
2.	Magnetization curves, Magnetic leakage, calculation of mmf for air gap and teeth,	5
	effect of saliency.	
3.	Armature Winding Design.	
0.	Winding design, Integrated approach for windings, A.C armature windings,	6
	production of emf in windings, Mmf distribution of armature windings, eddy current	
	losses in conductors.	
4.	Design of D.C Machines::	
	Output equation, Main dimensions, Armature design, Armature windings, Design of	7
	commutator and brushes, Design of Field systems, Design of interpoles.	
5.	Design of single-phase and three-phase Transformers Output equation agree design winding design valve design Design of transformer	
	Output equation, core design, winding design, yoke design, Design of transformer tank with tubes, design of insulation.	7
	Design of Induction Motors (1-phase and 3-phase)	
6	Output equation, main dimensions, Stator winding, stator conductors, shape of stator	7
	slots, number of stator slots, stator core, rotor design (squirrel cage and wound rotor)	
	siots, humber of stator siots, stator core, rotor design (squirrer cage and wound rotor)	
7.	Design of Synchronous Machines:	3
	Main dimensions, length of air gap, stator	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Date of publishing
1	Electric Machine Design	A.K. Sawhney	Dhanpat rai and sons	1996
2	Design of Electrical Machines	Mittle and Mittal	Standard publishers and distributers	1983
3	Electrical machine Design	R.K. Agarwal	S.S.Kataria and sons	2010

	NAME OF THE DEPARTMENT:		Electrical Engineer	ing
1	Subject Code ELE-603P		Course Title	COMPUTER AIDED DESIGN OF ELECTRIC MACHINES LAB
2	Contact Hours: 02		L 0 T	0 P 2
3	Examination Duration (Hrs):		Theory 0 0	Practical 0 2
4	Relative Weight age		MSLE 2 5	ESLE 2 5
5	Credits: 0 1	3 rd Semester	√ Autumn Sp	ring
6	Objective:			

S.No	Experiments
1	Design of Single-phase Transformers.
2	Design of Three-phase Transformers.
3	Design of Autotransformers.
4	Design of Direct current Machines.
5	Design of Induction Machines.
6	Design of Synchronous Machines.

Electrical Engineering

1	Subject Code ELE-605	Course Title DIGITAL SIGNAL PROCESSING
2	Contact Hours: 42	L 3 T 1 P 0
3	Examination Duration (Hrs):	Theory 0 3 Practical
4	Relative Weight age M-I 2 0	MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4	Semester √

Autumn

Spring

6 Objective: the objective of the course is to enhance the digital signal processing skills and technicalities of the students.

7. Details of the Course:

NAME OF THE DEPARTMENT:

S.No	Particulars	Contact Hours
1.	Discrete Time Signals & Systems	8
	Sequences, & sequence operations, Discrete-time systems. Linear Time - Invariant systems,	
	impulse response, causality, stability. Frequency-Domain Representation of Discrete-Time	
	signals and systems, Fourier Transforms, properties, theorems.	
2.	Sampling of Continuous – Time Signals.	_
	Periodic sampling, frequency-domain representation of sampling, reconstruction of signals,	8
	discrete-time processing of continuos –time signals, continuous –time processing of Discrete-time	
	signals, changing the sampling rate.	
3.	Transform Analysis of Linear time Invariant Systems.	
	Z- Transform, Region of Convergence, properties, Inverse Z-Transform, Frequency Response of	9
	LTI systems, system functions, linear constant coefficient, difference equations FIR and IIR	-
	systems, Frequency Response.	
4.	Structure of Discrete-Time Systems.	
	Block Diagram Representation of linear constant-coefficient Difference equations, signal flow	8
	graph representation. Basic structures for IIR systems, Transposed forms, Basic network	
	structures for FIR systems.	
5	Filter Design Techniques.	
	Design of Discrete-Time IIR filters from continuous - Time filters. Impulse invariance, bilinear	9
	transformation. Butterworth Chebyshev, Eliptic Approximation, low pass, high pass, band-pass	
	and Band-stop filters, design of FIR filters by windowing. Kaiser, Hamming, Hamming windows	
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Year of publication
1	Discrete Time Signal Processing.	A.V. Oppenheim and R. W. Schafer	Prentice hall international	1989
2	Digital Signal Processing Principles, Algorthims and Applications.	John G. Proakis and D.G Manolavis:		1995
3	Introduction To Digital Signal Processing.	J.R Johnson	Prentice hall	1989
4	Theory and Application of Digital Signal Processing.	L.R. Rabinder and B. Gold	Prentice hall	1975

NAME OF THE DEPARTMENT:	Electrical Engineering

1	Subject Code ELE-606	Course Title MICROPROCESSOR
2	Contact Hours: 42	L 2 T 1 P
3	Examination Duration (Hrs):	Theory 0 3 Practical
4	Relative Weight age M-I 2 0	MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4	Semester Autumn Spring

Objective: 6

Details of the Course: 7.

S.No	Particulars	Contact Hours
1.	Overview of Microprocessor	6
	Basic Terminology, evolution of Microprocessors, State of Art of μ P, why we study 8085 μ P	
2.		
	8085 ~ p Architecture:	6
	Pin diagram, detailed internal architecture, state transition Diagrams, T-states (dock cycles),	
3.	machine cycles, instruction cycles, instruction formats.	
	Instruction Set and Programming Techniques:	6
	Different addressing modes, complete description of all instructions with macro and micro RTL	
4.	(Register Transfer language), programming examples, simulation of time delays.	•
	Interrupts:	6
	Concept of interrupts, priority of interrupts signals, software generated interrupts and hardware	
5.	generated interrupts.	4
6.	Serial I/O: Introduction with reference to 8085, general concepts.	
0.	Interfacing:	8
	Concept of fold back addresses, memory maps, memory mapped I/O isolated I/o, interfacing of	
	seven segment LED display, toggle switches, keyboard interfacing, memory interfacing,	
	simplification of interfacing circuitry with the help of decoders, general purpose programmable	
7.	peripheral devices, interfacing of A/D and D/A conversion devices.	4
	Microprocessor Applications:	
8.	Some illustrative examples.	2
	Introduction to 8086 p	
	Total Contact Hours	42

9. Suggested Books: 10.

10.				
S.No	Name of Book	Author	Publisher	Date of publishing
1	Microprocessor Architecture Programming and Applications with the 8085	Ramesh S. Gaonkar.	Prentice hall	2002
2	Microprocessors and Programmed Logic	K.L. Short	Prentice hall	1988
3	Microprocessors: Theory and Applications (Intel and Motorola)	M. Rafiquzzaman	Prentice hall	1992

Electrical Engineering 1 **Subject Code** ELE-606P **Course Title** MICROPROCESSOR LAB 0 T P 2 2 **Contact Hours** 0 Theory 0 0 **Examination Duration (Hrs):** Practical 0 2 3 MSLE 2 5 Relative Weight age ESLE 2 5 3rd Semester 5 **Credits:** 1 Autumn Spring 6 **Objective:**

11. Lab. Experiments:

NAME OF THE DEPARTMENT:

S.No	Experiments
1	Microprocessors (8085) training kit and its working.
2	Programs related to data transfer between registers, between registers and memory.
3	Programs related to logic instructions.
4	Programming techniques with additional instructions. Looping, counting and indexing.
5	Programs related to Arithmetic Instructions, 8 bit and 16 bit Addition and Subtraction.
6	Copying Blocks of data from one part of memory to another, conditional copy.
7	Programs related to Counters and time delays
8	Programs related to use of stack and subroutines. Nesting.
9	Interfacing concepts. Switch and LED interfacing. Square wave generation.
10	ADC interfacing.

Electrical Engineering

Autumn

Spring

1	Subject Code ELE-607	Course Title POWER ELECTRONICS [ECE]
2	Contact Hours: 42	L 2 T 1 P 2
3	Examination Duration (Hrs):	Theory 0 3 Practical
4	Relative Weight age MH 2 0	MHI 2 0 ASM 1 0 ME 5 0 PRE 0 0
5	Credits: 0 4	Semester √

6 **Objective:**

7. Details of the Course:

NAME OF THE DEPARTMENT:

S.No	Particulars	Contact Hours
1.	Introduction of Power Electronics, Power Semi-conductor Devices: Power	8
	Diodes, power Transistors, power MOSFETs, IGBTs, GTOs, Thyristors, Basic theory	
	of operation, characteristics, Ratings, Protection and cooling, Recent Advances in	
	Power Semi-conductor Devices.	
2.	Driving and control circuits: series and parallel operation of devices, commutation of	4
	power switching devices.	
3.	Power Electronic converters: 1-phase / 3 phase phase-controlled converters (Semi-	8
	converters, full - converters and Dual converters). Analysis and performance with	
	passive load, Harmonics and power factor, PWM Rectifiers.	
4.	D.C-to-D.C converters (choppers): Buck, Boost and Buck-Boost type and various	5
	chopper configurations.	
5.	A.C voltage controllers.	2
6.	D.C -to-A.C converters (Inverters): 1-phase / 3-phase, VSI, PWM VSI, CSI,	6
	Frequency and voltage control, Line-commutated inverters (LCIs).	
7.	Cyclo-converters (1-phase and 3-phase)	3
8.	Power quality issues and present status of improved power quality converters	4
	(IPQCs).	
9.	Some typical applications of power Electronics	2
	Total Contact Hours	42

S.No	Name of Book	Author	Publisher	Date of publishing
1.	Power Electronics: Circuits, Devices and Applications	M. H. Rashid	Pearson education india	2003
3.	Power Electronics	C.W Lander.	McGraw-Hill	1994
4.	Power semi-conductor controlled Drives	G.K.Dubey	Prentice Hall	1989
5.	Thyristorized Power controllers	G.K. Dubey, Doradla, Joshi and Sinha	New age international publishers	1986
6.	Power Electronics and Variable Frequency Drives	B.K Bose	Wiley publication	1997
7.	Modern power Electronics	B.K Bose	Jaico publishers	1992
8.	Power Electronic control of AC Motor	Murphy and Tumbull	Pergamon press	1988

Subject Code Course Title POWER ELECTRONICS LAB [ECE] 1 ELE-607P P 2 2 Contact Hours:02 0 Т Theory 0 0 Practical 0 2 3 **Examination Duration (Hrs):** MSLE 2 5 Relative Weight age ESLE 2 5 4 Credits: 3rd Semester 5 1 Autumn Spring

Electrical Engineering

6 **Objective:**

Lab. Experiments:

NAME OF THE DEPARTMENT:

S.No	Experiments		
1	To obtain the V-I static characteristics of an SCR, triac and diac,.		
2	To study various triggering circuits		
3	To obtain the UJT characteristics		
4	To study the operation of a Line Synchronised UJT Relaxation Oscillator.		
5	To study the illumination control using SCR.		
6	To study the light operated SCR Alarm circuit.		
7	To study half wave gate controlled rectifier using one SCR.		
8	To study single phase half controlled, full wave rectifier.		
9	To study various techniques of forced commutation of an SCR.		
10	To study the DC circuit breaker action of an SCR.		
11	To study the speed control of a DC shunt motor using single phase bridge converter.		
'12	To study the speed control of a single phase induction motor using single phase voltage controller.		