Optoelectronic Devices (Phy-NITS) Course Format

COURSE DESCRIPTION: Optoelectronics lies at the intersection of optics and microelectronics. Optoelectronic devices and circuits are quickly becoming core technologies for several key technical areas such as telecommunications, information processing, optical storage, and sensors. The widest deployment of fiber optics has, so far, been in the area of fiber optic technology, which relies on optoelectronic devices to generate (semiconductor light emitting diodes and lasers), modulate, amplify, switch, and detect optical signals. This course will cover these components. Additional topics that will be covered include solar cells, photonic crystals, and plasmonics, which are rapidly emerging optoelectronic technologies.

Optoelectronic Devices

Lecture \#1-Overview
Lectures \#2 to \#6 - Waveguides
Theory of Dielectric Waveguides
Attenuation
Dispersion
Fabrication Techniques
Photonic Crystals
Plasmonics
Splices and Connectors (probably assigned reading)
Lectures \#7 to \#16 - Emitters
Heterojunctions
Current Injection
Carrier Confinement
Light Emitting Diodes
Critical Parameters
Displays - particularly blue LEDs
Optical Amplifiers
Semiconductor Lasers
Optical Gain
Threshold Condition
Device Characteristics
Structures
LI Characteristic

Field Intensity
Mode Structure
Output Power
Linewidth - DFBs and DBRs
Bandwidth
Lecture \#17 - Optical Modulators
Mach-Zehnder modulators
Electroabsorption modulators
Integrated laser/modulators
Lectures \#18 to \#21 - Photodetectors
Physics of Photodetectors
Solar Cells
PIN Photodiodes
Responsivity
Dark Current
Bandwidth
MSM Photodetectors
Responsivity
Bandwidth
Avalanche Photodiodes
Gain Mechanism
Bandwidth and Gain-Bandwidth Product
Multiplication Noise
Recent advances in Photodetection Techniques
Lectures \#22 and 25 - WDM Devices
Wavelength conversion
Optical switching

